首页 | 本学科首页   官方微博 | 高级检索  
     


Some ways of looking at compensatory kosmotropes and different water environments
Authors:Lever M  Blunt J W  Maclagan R G
Affiliation:Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand. michael.lever@chmeds.ac.nz
Abstract:Hydration of macromolecular structures determines biological activity. Stabilizing solutes are kosmotropic (increase order of water) rather than chaotropic (decrease order). Preferential hydration of surfaces is a thermodynamic consequence of the solution behavior of kosmotropic solutes, but inconsistencies imply interactions such as the hydration of specific sites within macromolecules. Thermodynamic measures require bulk pure solutes; here simpler measures of the effects on bulk water, water at surfaces and hydration water of probes have been applied to solutes including natural stabilizers, analogues and example chaotropes. Changes in the near-infrared spectra, water proton NMR chemical shifts and relaxation times measure changes in the bulk liquid; HPLC-column retention of solutes indicate interactions with hydration water at different surfaces, and fluorescence probes detect effects on functional group hydration water. Ab initio calculations and Monte-Carlo simulations of the solutes in water measure the energetics of the solute-water interactions, the dipole moments of these molecules, their charge distributions and the effect of the solute molecules on the structure of water. The rankings of the test solutes by these measures are not consistent. Thus, stabilizing solutes are not interchangeable in biological systems and the intracellular replacement of one by another could affect the integration of cell metabolism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号