首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The indiction by complement of a change in KSCN-dissociable red cell membrane lipids.
Authors:E B Giavedoni  A P Dalmasso
Abstract:During complement lysis of antibody-sensitized sheep erythrocytes (EA) there was a larger loss of membrane phospholipids than during lysis elicited by hypotonic buffer. In addition, membranes prepared from complement-lysed EA had a marked reduction in KSCN (2.4 M)-dissociable membrane cholesterol and phospholipids, as compared to membranes from EA lysed hypotonically. Complement lysis caused a mild reduction in the amount of KSCN-dissociable membrane hexose but no change in the amount of dissociable protein. The impairment in dissociation of membrane lipids was related to the action of C8; it did not occur with membranes from EA that were treated with heat-inactivated (56 degrees C for 30 min) human serum, C4-deficient guinea pig serum, C6-deficient rabbit serum, or the first seven human complement components. EA lysed with limited amounts of complement exhibited a partial impairment in KSCN-dissociable lipids. Membranes from erythrocytes lysed with melittin showed a large increase in dissociation by KSCN of lipids, proteins,and hexoses. Membranes from erythocytes lysed with lysolecithin or phospholipase C showed, in addition to a reduction in dissociable lipid, a much larger reduction in dissociable hexose than a membranes from complement-lysed cells. These profiles of reactivity with 2.4 M KSCN inidcate that the membrane pertubations caused caused by complement may be specific. We conclude that complement-lysis is accompanied by a major rearrangement of membrane cholesterol and phospholipid which could be demonstrated in membranes from cells lysed by only one or very few complement lesions. Therefore, it appears that the lesions induce a propragated change in the lipid organization which extends throughout large areas of the membrane. This change might be responsible for the impairment of membrane permeability that follows the action of complement and results in cell destruction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号