首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytochemical localization of adenylate cyclase and of calcium ion, magnesium ion-activated ATPases in the dense tubular system of human blood platelets.
Authors:L Cutler  G Rodan  M B Feinstein
Abstract:Cytochemical techniques have been employed to study the localization of adenylate cyclase and (Ca2+ + Mg2+)-stimulated ATPase activities in platelets after fixation. Biochemical analysis of adenylate cyclase demonstrated a 70% reduction in activity in homogenates from fixed cells, but the residual activity could be stimulated 10--20 times by prostaglandin E1 (1 micrometer) under the same incubation conditions as employed in the cytochemical studies (e.g. media containing 2 mM lead nitrate and 10 mM NaF). Adenylate cyclase activity employing 5'-adenylyl-imiodiphosphate (AMP-P(NH)P) as substrate was found to be associated with the dense tubular system (smooth endoplasmic reticulum) in intact fixed platelets, and was apparent only when the cells were incubated with prostaglandin E1. Less activity was found along the membranes of the surface connected open canalicular system and occasionally at the outer cell surface. Enzymatic activity was blocked by the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl) adenine and was not due to AMP-P(NH)P phosphohydrolase activity. The low adenylate cyclase activity in the surface membranes may be due to enzyme inactivation as a result of fixation, since a surface membrane fraction obtained by the glycerol lysis technique from unfixed cells had an adenylate cyclase specific activity equivalent to that in the microsomal membrane fraction. (Ca2+ + Mg2+)-stimulated ATPase activity was found associated with the membranes of the surface connected open canalicular system in unfixed cells. After brief fixation (5--15 min) with glutaradehyde, strong (Ca2+ + Mg2+)ATPase activity became apparent in the dense tubular system. Longer periods of fixation inactivated enzymatic activity. Addition of Ca2+ (1.0 mM) to incubation medium with low Mg2+ (0.2 mM), or increasing Mg2+ to 4.0 mM, in both cases strongly stimulated enzyme activity. The ATPase activity in the platelet membranes was not inhibited by ouabain. It is suggested that the Ca2+-stimulated ATPase and adenylate cyclase activities in the dense tubules may possibly be involved in regulation of intracellular Ca2+ transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号