首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Cell Density on Lipids of Human Glioma and Fetal Neural Cells
Authors:V. A. Liepkalns  C. Icard  A. J. Yates  D. K. Thompson  R. W. Hart
Affiliation:Department of Pathology, The Ohio State University School of Medicine, Columbus, Ohio, U.S.A.;Department of Radiology, The Ohio State University School of Medicine, Columbus, Ohio, U.S.A.
Abstract:Abstract: Gangliosides, phospholipids, and cholesterol of human glioma (12-18) and fetal neural cells (CH) were analyzed at specified cell densities, from sparse to confluent. Total ganglioside sialic acid, phospholipid phosphorus, and cholesterol increased in the glioma cells on a per cell, mg protein, or mg total lipid basis two- to threefold as cell density increased 25-fold. These same three constituents in the fetal cells increased with cell density on a per cell and mg protein basis but not on a per mg total lipid basis. In glioma cells, the di- and trisialogangliosides (GD2+ GDlb+ GT1) increased from 1–2% of total ganglioside sialic acid at sparse densities to 7–8% at intermediate (logarithmic phase) densities to 10–13% at confluent densities. The set of simpler gangliosides (GM4+ GM3+ GM2) decreased from 50% of total ganglioside sialic acid at sparse glioma cell densities, to 36% at intermediate and 30% at confluent densities. In the fetal neural cells, the set of gangliosides (GM4+ GM3+ GM2) had about 48% of total ganglioside sialic acid in both sparse and confluent preparations. The fetal cells were twofold higher in GM3 (32.4 ± 2.1%) than the glioma cells (16.8 ± 1.6%), but lower in GMt (9.1 ± 0.9% versus 18.2 ± 1.8%), cell densities notwithstanding. Confluent cell preparations of both cell lines were consistently higher in ethanolamine plasmalogen than sparse cells. We conclude that in these two neural cell lines quantitative changes in ganglioside and phospholipid species occurred correlatively as cell densities increased. Higher glioma cell densities were associated with greater proportions of complex ganglioside species. These changes in cell membrane constituents during growth may result from cell contact and may indicate a role for them in cell growth regulation and/or differentiation.
Keywords:Glioblastoma    Gangliosides    Phospholipids    Cholesterol    Glia    Cell culture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号