首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Latest Pleistocene—Holocene paleoceanographic trends on the continental margin of eastern Canada: Foraminiferal,dinoflagellate and pollen evidence
Authors:David B Scott  Peta J Mudie  Gustavs Vilks  D Chloe Younger
Institution:1. Centre for Marine Geology, Dalhousie University, Halifax, Nova Scotia B3H 3J5 Canada;2. Geological Survey of Canada, Atlantic Geoscience Centre, Box 1006, Dartmouth, Nova Scotia B2Y 4A2 Canada
Abstract:Micropaleontological studies were made of cores from four shelf basins on the eastern Canadian Margin: Emerald and Canso basins on the Scotian Shelf (44°–46° N), Notre Dame Channel, Newfoundland Shelf (50° N) and Cartwright Saddle, Labrador Shelf (55°). Events were correlated using a combination of14C dates and pollen stratigraphies. Surface- and bottom-water changes were compared on the basis of dinoflagellates and benthic foraminifera, respectively. The results indicate significant paleoceanographic shifts along a north—south gradient both prior to and during the Holocene.Distinct Late Pleistocene—Holocene paleoceanographic events were distinguished in the Emerald, Canso and Notre Dame basins; these events are less obvious in Cartwright Saddle which is in deeper water and further off-shore. Pleistocene glaciomarine sediments in all basins contain a fauna dominated byElphidium excavatum f.clavata; dinoflagellates and pollen are rare or absent. The widespreadElphidium fauna probably reflects turbid glacial meltwater and/or a permanent ice shelf cover from 20,000-10,000 yrs BP. The Notre Dame core also penetrates older sediment with an outer Labrador Current fauna which may represent a late Wisconsinian interstade at about 23,000 yrs BP. From 7,000–10,000 yrs BP a cold water fauna occurred which is similar to modern outer Labrador Current faunas. From about 5000–7000 yrs BP, a warm interval is indicated by a relatively warm-water calcareous benthonic foraminiferal fauna and increased representation of typical Gulf Stream dinoflagellates. The most recent change occurred in the last 2000 years with an abrupt cooling associated with stronger flow of the arctic inner Labrador Current. This cooling event is marked by an increase in arctic dinoflagellates and by an exclusively agglutinated benthonic foraminiferal fauna at two sites (Canso and Notre Dame). These Holocene paleoceanographic changes are not clearly seen in the benthic fauna of the deep northern basin (Cartwright Saddle) although dinoflagellate data at this site indicate that surface-water changes have occurred that are similar to those found in shallower basins.Shifts in the zonal position of the Gulf Stream and changes in the relative mass transports of the West Greenland and Labrador currents are mechanisms which may account for the paleoceanographic events. The glacial—interstadial—glacial sequence recorded in the Notre Dame Channel, in conjunction with other theories on glacial triggering mechanisms, provides biostratigraphic evidence which suggests the onset of a glacial stage in the near future.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号