Abstract: | The cytotoxic and mutagenic effects of X irradiation on a human lymphoblast cell line were examined in the presence of two radioprotective agents which modulate damage to DNA. The cells were treated with X rays alone or in the presence of either dimethyl sulfoxide or cysteamine. Surviving fraction and mutation to trifluorothymidine resistance (tk locus) and to 6-thioguanine resistance (hgprt locus) were measured. Survival was enhanced when the cells were irradiated in the presence of dimethyl sulfoxide; the D0 rose from 58 to 107 rad. However, at both genetic loci the induced mutant fractions were identical in the presence or absence of dimethyl sulfoxide. Survival was enhanced to a greater degree when the cells were irradiated in the presence of cysteamine; the D0 rose from 58 to 200 rad. Cysteamine also protected the cells from X-ray-induced mutation; the frequencies of X-ray-induced mutation at both the tk and hgprt loci were reduced by 50-75%. No protective effects were observed unless dimethyl sulfoxide or cysteamine was present during irradiation. These findings are discussed in terms of the hypothesis that, unlike for cell killing, radiation-induced mutagenesis in human lymphoblast cells is not mediated by the actions of aqueous free radicals, but rather by the direct effects of ionizing radiation. |