首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of temporal sensing in bioelectromagnetic effects
Authors:TA Litovitz  M Penafiel  D Krause  D Zhang  JM Mullins
Abstract:Experiments were conducted to see whether the cellular response to electromagnetic (EM) fields occurs through a detection process involving temporal sensing. L929 cells were exposed to 60 Hz magnetic fields and the enhancement of ornithine decarboxylase (ODC) activity was measured to determine cellular response to the field. In one set of experiments, the field was turned alternately off and on at intervals of 0.1 to 50 s. For these experiments, field coherence was maintained by eliminating the insertion of random time intervals upon switching. Intervals ≥ 1 s produced no enhancement of ODC activity, but fields switched at intervals ≥ 10 s showed ODC activities that were enhanced by a factor of approximately 1.7. These data indicate that it is the interval over which field parameters (e.g., amplitude or frequency) remain constant, rather than the interval over which the field is coherent, that is critical to cellular response to an EMF. In a second set of experiments, designed to determine how long it would take for cells to detect a change in field parameters, the field was interrupted for brief intervals (25–200 ms) once each second throughout exposure. In this situation, the extent of EMF-induced ODC activity depended upon the duration of the interruption. Interruptions ≥ 100 ms were detected by the cell as shown by elimination of field-induced enhancement of ODC. That two time constants (0.1 and 10 s) are involved in cellular EMF detection is consistent with the temporal sensing process associated with bacterial chemotaxis. By analogy with bacterial temporal sensing, cells would continuously sample and average an EM field over intervals of about 0.1 s (the “averaging” time), storing the averaged value in memory. The cell would compare the stored value with the current average, and respond to the EM field only when field parameters remain constant over intervals of approximately 10 s (the “memory” time). Bioelectromagnetics 18:388–395, 1997. © 1997 Wiley-Liss, Inc.
Keywords:ornithine decarboxylase  cell culture  60 Hz fields    averaging”  time    memory”  time
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号