The metabolic organization of a primitive air-breathing fish, the Florida gar (Lepisosteus platyrhincus) |
| |
Authors: | Frick Natasha Therese Bystriansky Jason Scott Ballantyne James Stuart |
| |
Affiliation: | Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1. |
| |
Abstract: | The metabolic organization of the air-breathing Florida gar, Lepisosteus platyrhincus, was assessed by measuring the maximal activities of key enzymes in several metabolic pathways in selected tissues, concentrations of plasma metabolites including nonesterified fatty acids (NEFA), free amino acids (FAA) and glucose as well as tissue FAA levels. In general, L. platyrhincus has an enhanced capacity for carbohydrate metabolism as indicated by elevated plasma glucose levels and high activities of gluconeogenic and glycolytic enzymes. Based upon these properties, glucose appears to function as the major fuel source in the Florida gar. The capacity for lipid metabolism in L. platyrhincus appears limited as plasma NEFA levels and the activities of enzymes involved in lipid oxidation are low relative to many other fish species. L. platyrhincus is capable of oxidizing both D- and L-beta-hydroxybutyrate, with tissue-specific preferences for each stereoisomer, yet the capacity for ketone body metabolism is low compared with other primitive fishes. Based on enzyme activities, the metabolism of the air-breathing organ more closely resembles that of the mammalian lung than a fish swim bladder. The Florida gar sits phylogenetically and metabolically in an intermediate position between the "primitive" elasmobranchs and the "advanced" teleosts. The apparently unique metabolic organization of the gar may have evolved in the context of a bimodal air-breathing environmental adaptation. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|