Abstract: | As an extension of work on the inhibition of enzymes by arylthallium(III) reagents, the thallium analogues of the organomercurials, we have studied the interactions of these molecules with transfer RNA. In contrast to thallous acetate, thallium(III) derivatives (thallic trifluoroacetate, p-methylphenylthallium(III) bis-trifluoroacetate (MPT) and o-carboxyphenylthallium(III) bis-trifluoroacetate) bound to Escherichia coli tRNA. The interaction was fully reversible upon Sephadex G-25 gel filtration, and binding constants and stoichiometries were evaluated by a number of procedures. The likely site of interaction was shown to be the thiouridine residue (s4U8) based on changes induced by MPT on the absorbance around 330 nm. No changes in stacking interactions could be detected from the absorption or circular dichroic spectra. The detailed structure of the groups on thallium(III) affected the interaction with tRNA. Thalliation at s4U8 affects the absorbance at 335 nm and the amino-acid uptake capacity of E. coli tRNAPhe in parallel, the latter being progressively inhibited by increasing amounts of MPT. In a model nucleoside system, uridine disulphide is probably formed from reduced thiouridine by the oxidative action of the Tl(III) reagents. No evidence of cross-linking of E. coli tRNA molecules under gel electrophoretic conditions was obtained in contrast to the model nucleoside. The easily reversible interaction of MPT with sulphur sites in E. coli tRNA contrasts with the stable (to gel filtration) bonds formed between MPT and (thiol) sites in enzymes. |