首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment
Authors:Nicole S Nowinski  Lina Taneva  Susan E Trumbore  Jeffrey M Welker
Institution:1. Department of Earth System Science, University of California, Irvine, 3200 Croul Hall, Irvine, CA, 92697, USA
2. Environment and Natural Resources Institute, University of Alaska, Anchorage, 707 A St, Anchorage, AK, 99501, USA
4. Max-Planck Institute for Biogeochemistry, Hans-Knoell Strasse 10, 07745, Jena, Germany
3. Biology Department, University of Alaska, Anchorage, 3211 Providence Dr, ENGR 333, Anchorage, AK, 99508, USA
Abstract:A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2–3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (?14C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. ?14C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45–55 cm thaw depth), while CO2 from the ambient snow areas was ~100 years old (30-cm thaw depth). Heterotrophic respiration ?14C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号