首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sulfatides inhibit leukotriene synthesis in human polymorphonuclear granulocytes by a mechanism involving lipid rearrangement in intracellular membranes
Authors:Grishina Zoryana V  Pushkareva Marina A  Pletjushkina Olga Yu  Reiser Georg  Peters-Golden Marc  Sud'ina Galina F
Institution:A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia. zoryana@belozersky.msu.ru
Abstract:Sulfatides - sulfated derivatives of galactocerebroside - are endogenous ligands for P- and L-selectins and are able to induce intracellular signaling in neutrophils through a L-selectin dependent pathway. Sulfatides are implicated in a variety of physiological functions and have been found to suppress the synthesis of 5-lipoxygenase (5-LO) metabolites and impede 5-LO translocation to the nuclear envelope in adherent human polymorphonuclear leukocytes (PMNs) Sud'ina, G. F., Brock, T. G., Pushkareva, M. A., Galkina, S. I., Turutin, D. V., Peters-Golden, M., et al. (2001). Sulphatides trigger polymorphonuclear granulocyte spreading on collagen-coated surfaces and inhibit subsequent activation of 5-lipoxygenase. The Biochemical Journal, 359, 621-629]. In this study we investigated the mechanism of the leukotriene (LT) synthesis inhibition by sulfatides. Sulfatides neither attenuated the ionophore-induced rise in Ca(2+)](i) nor promoted PKA activation. We demonstrated that sulfatides directly inhibited 5-LO enzyme activity in a cell-free assay. BODIPY-labeled sulfatides were able to rapidly penetrate into the cells. Sulfatides induced rearrangement and redistribution of cytoskeletal components in adherent PMNs. The lipid incorporation as well as sulfatide-induced inhibition of LT synthesis were abolished by cytochalasin D, an inhibitor of actin polymerization and endocytosis. Importantly, sulfatides caused a prominent intracellular cholesterol redistribution, increasing its abundance at the uropod region. On the basis of these data, we suggest that increased cholesterol accumulation in cell compartments represents a novel mechanism by which sulfatides abrogate 5-LO translocation and activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号