首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transforming Growth Factor-?? Promotes Recruitment of Bone Marrow Cells and Bone Marrow-derived Mesenchymal Stem Cells through Stimulation of MCP-1 Production in Vascular Smooth Muscle Cells
Authors:Fan Zhang  Shirling Tsai  Kaori Kato  Dai Yamanouchi  Chunjie Wang  Shahin Rafii  Bo Liu  and K Craig Kent
Institution:From the Department of Surgery, University of Wisconsin School of Medicine, Madison, Wisconsin, 53705, ;§Department of Surgery, Division of Vascular Surgery, Weill Medical College of Cornell University, New York, New York 10065, and ;Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York 10065
Abstract:Bone marrow-derived progenitor cells have recently been shown to be involved in the development of intimal hyperplasia after vascular injury. Transforming growth factor-β (TGF-β) has profound stimulatory effects on intimal hyperplasia, but it is unknown whether these effects involve progenitor cell recruitment. In this study we found that although TGF-β had no direct effect on progenitor cell recruitment, conditioned media derived from vascular smooth muscle cells (VSMC) stimulated with TGF-β induced migration of both total bone marrow (BM) cells and BM-mesenchymal stem cells (MSC) and also induced MSC differentiation into smooth muscle like cells. Furthermore, overexpression of the signaling molecule Smad3 in VSMC via adenovirus-mediated gene transfer (AdSmad3) enhanced the TGF-β''s chemotactic effect. Microarray analysis of VSMC stimulated by TGF-β/AdSmad3 revealed monocyte chemoattractant protein-1 (MCP-1) as a likely factor responsible for progenitor cell recruitment. We then demonstrated that TGF-β through Smad3 phosphorylation induced a robust expression of MCP-1 in VSMC. Recombinant MCP-1 mimicked the stimulatory effect of conditioned media on BM and MSC migration. In the rat carotid injury model, Smad3 overexpression significantly increased MCP-1 expression after vascular injury, consistent with our in vitro results. Interestingly, TGF-β/Smad3-induced MCP-1 was completely blocked by both Ro-32-0432 and rotterlin, suggesting protein kinase C-δ (PKCδ) may play a role in TGF-β/Smad3-induced MCP-1 expression. In summary, our data demonstrate that TGF-β, through Smad3 and PKCδ, stimulates VSMC production of MCP-1, which is a chemoattractant for bone marrow-derived cells, specifically MSC. Manipulation of this signaling system may provide a novel approach to inhibition of intimal hyperplasia.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号