首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of Microtubule Dynamic Instability in Vitro by Differentially Phosphorylated Stathmin
Authors:Tapas Manna  Douglas A Thrower  Srinivas Honnappa  Michel O Steinmetz  and Leslie Wilson
Institution:From the Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106 and ;§Biomolecular Research, Structural Biology, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Abstract:Stathmin is an important regulator of microtubule polymerization and dynamics. When unphosphorylated it destabilizes microtubules in two ways, by reducing the microtubule polymer mass through sequestration of soluble tubulin into an assembly-incompetent T2S complex (two α:β tubulin dimers per molecule of stathmin), and by increasing the switching frequency (catastrophe frequency) from growth to shortening at plus and minus ends by binding directly to the microtubules. Phosphorylation of stathmin on one or more of its four serine residues (Ser16, Ser25, Ser38, and Ser63) reduces its microtubule-destabilizing activity. However, the effects of phosphorylation of the individual serine residues of stathmin on microtubule dynamic instability have not been investigated systematically. Here we analyzed the effects of stathmin singly phosphorylated at Ser16 or Ser63, and doubly phosphorylated at Ser25 and Ser38, on its ability to modulate microtubule dynamic instability at steady-state in vitro. Phosphorylation at either Ser16 or Ser63 strongly reduced or abolished the ability of stathmin to bind to and sequester soluble tubulin and its ability to act as a catastrophe factor by directly binding to the microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not affect the binding of stathmin to tubulin or microtubules or its catastrophe-promoting activity. Our results indicate that the effects of stathmin on dynamic instability are strongly but differently attenuated by phosphorylation at Ser16 and Ser63 and support the hypothesis that selective targeting by Ser16-specific or Ser63-specific kinases provides complimentary mechanisms for regulating microtubule function.Stathmin is an 18-kDa ubiquitously expressed microtubule-destabilizing phosphoprotein whose activity is modulated by phosphorylation of its four serine residues, Ser16, Ser25, Ser38, and Ser63 (17). Several classes of kinases have been identified that phosphorylate stathmin, including kinases associated with cell growth and differentiation such as members of the mitogen-activated protein kinase (MAPK)2 family, cAMP-dependent protein kinase (15, 811), and kinases associated with cell cycle regulation such as cyclin-dependent kinase 1 (3, 1214). Phosphorylation of stathmin is required for cell cycle progression through mitosis and for proper assembly/function of the mitotic spindle (3, 1316). Inhibition of stathmin phosphorylation produces strong mitotic phenotypes characterized by disassembly and disorganization of mitotic spindles and abnormal chromosome distributions (3, 1314).Stathmin is known to destabilize microtubules in two ways. One is by binding to soluble tubulin and forming a stable complex that cannot polymerize into microtubules, consisting of one molecule of stathmin and two molecules of tubulin (T2S complex) (1724). Addition of stathmin to microtubules in equilibrium with soluble tubulin results in sequestration of the tubulin and a reduction in the level of microtubule polymer (1718, 22, 2528). In addition to reducing the amount of assembled polymer, tubulin sequestration by stathmin has been shown to increase the switching frequency at microtubule plus ends from growth to shortening (called the catastrophe frequency) as the microtubules relax to a new steady state (17, 29). The second way is by binding directly to microtubules (2730). The direct binding of stathmin to microtubules increases the catastrophe frequency at both ends of the microtubules and considerably more strongly at minus ends than at plus ends (27). Consistent with its strong catastrophe-promoting activity at minus ends, stathmin increases the treadmilling rate of steady-state microtubules in vitro (27). These results have led to the suggestion that stathmin might be an important cellular regulator of minus-end microtubule dynamics (27).Phosphorylation of stathmin diminishes its ability to regulate microtubule polymerization (3, 14, 2526). Phosphorylation of Ser16 or Ser63 appears to be more critical than phosphorylation of Ser25 and Ser38 for the ability of stathmin to bind to soluble tubulin and to inhibit microtubule assembly in vitro (3, 25). Inhibition of stathmin phosphorylation induces defects in spindle assembly and organization (3, 14) suggesting that not only soluble tubulin-microtubule levels are regulated by phosphorylation of stathmin, but the dynamics of microtubules could also be regulated in a phosphorylation-dependent manner.It is not known how phosphorylation at any of the four serine residues of stathmin affects its ability to regulate microtubule dynamics and, specifically, its ability to increase the catastrophe frequency at plus and minus ends due to its direct interaction with microtubules. Thus, we determined the effects of stathmin individually phosphorylated at either Ser16 or Ser63 and doubly phosphorylated at both Ser25 and Ser38 on dynamic instability at plus and minus ends in vitro at microtubule polymer steady state and physiological pH (pH 7.2). We find that phosphorylation of Ser16 strongly reduces the direct catastrophe-promoting activity of stathmin at plus ends and abolishes it at minus ends, whereas phosphorylation of Ser63 abolishes the activity at both ends. The effects of phosphorylation of individual serines correlated well with stathmin''s reduced abilities to form stable T2S complexes, to inhibit microtubule polymerization, and to bind to microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not alter the ability of stathmin to modulate dynamic instability at the microtubule ends, its ability to form a stable T2S complex, or its ability to bind to microtubules. The data further support the hypotheses that phosphorylation of stathmin on either Ser16 or Ser63 plays a critical role in regulating microtubule polymerization and dynamics in cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号