首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Induction of the Cytoprotective Enzyme Heme Oxygenase-1 by Statins Is Enhanced in Vascular Endothelium Exposed to Laminar Shear Stress and Impaired by Disturbed Flow
Authors:Faisal Ali  Mustafa Zakkar  Kersti Karu  Elaine A Lidington  Shahir S Hamdulay  Joseph J Boyle  Mire Zloh  Andrea Bauer  Dorian O Haskard  Paul C Evans  and Justin C Mason
Institution:From the Cardiovascular Sciences, Bywaters Center for Vascular Inflammation, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, W12 ONN London and ;the §School of Pharmacy, University of London, 29/39 Brunswick Square, WC1N 1AX London, United Kingdom
Abstract:In addition to cholesterol-lowering properties, statins exhibit lipid-independent immunomodulatory, anti-inflammatory actions. However, high concentrations are typically required to induce these effects in vitro, raising questions concerning therapeutic relevance. We present evidence that endothelial cell sensitivity to statins depends upon shear stress. Using heme oxygenase-1 expression as a model, we demonstrate differential heme oxygenase-1 induction by atorvastatin in atheroresistant compared with atheroprone sites of the murine aorta. In vitro, exposure of human endothelial cells to laminar shear stress significantly reduced the statin concentration required to induce heme oxygenase-1 and protect against H2O2-mediated injury. Synergy was observed between laminar shear stress and atorvastatin, resulting in optimal expression of heme oxygenase-1 and resistance to oxidative stress, a response inhibited by heme oxygenase-1 small interfering RNA. Moreover, treatment of laminar shear stress-exposed endothelial cells resulted in a significant fall in intracellular cholesterol. Mechanistically, synergy required Akt phosphorylation, activation of Kruppel-like factor 2, NF-E2-related factor-2 (Nrf2), increased nitric-oxide synthase activity, and enhanced HO-1 mRNA stability. In contrast, heme oxygenase-1 induction by atorvastatin in endothelial cells exposed to oscillatory flow was markedly attenuated. We have identified a novel relationship between laminar shear stress and statins, demonstrating that atorvastatin-mediated heme oxygenase-1-dependent antioxidant effects are laminar shear stress-dependent, proving the principle that biomechanical signaling contributes significantly to endothelial responsiveness to pharmacological agents. Our findings suggest statin pleiotropy may be suboptimal at disturbed flow atherosusceptible sites, emphasizing the need for more specific therapeutic agents, such as those targeting Kruppel-like factor 2 or Nrf2.The efficacy of 3-hydroxy-3-methylglutaryl-coenzyme A reductase antagonists (statins) in reducing low density lipoprotein cholesterol, cardiovascular morbidity, and mortality is widely recognized (1). The observation that beneficial actions of statins on vascular function are detectable prior to any fall in serum cholesterol, extend to normocholesterolemic patients and exceed those of other lipid-lowering drugs despite comparable falls in total cholesterol (2, 3), suggest the existence of low density lipoprotein-cholesterol-independent effects (4, 5). Judging from in vitro studies, these may include immunomodulatory, anti-inflammatory, anti-adhesive, anti-thrombotic, and cytoprotective actions (6). However, the experimental work demonstrating these pleiotropic effects has predominantly used statin concentrations exceeding those achieved by therapeutic dosing, raising questions concerning clinical relevance (4).Heme oxygenase-1 (HO-1)2 acts as the rate-limiting factor in the catabolism of heme into biliverdin, releasing free iron and carbon monoxide (CO). Biliverdin is subsequently converted to bilirubin by biliverdin reductase, whereas intracellular iron induces expression of heavy chain-ferritin and the opening of Fe2+ export channels (7). The biologic activity of HO-1 represents an important adaptive response in cellular homeostasis, as revealed by widespread inflammation and persistent endothelial injury in human HO-1 deficiency (8).Expression of HO-1 in atherosclerotic lesions, and its ability to inhibit vascular smooth muscle cell proliferation, exert anti-inflammatory, antioxidant, and antithrombotic effects, suggests a protective role during atherogenesis (9, 10). HMOX1 promoter polymorphisms affecting HO-1 expression may influence susceptibility to intimal hyperplasia and coronary artery disease, whereas a low serum bilirubin constitutes a cardiovascular risk factor (11). Moreover, overexpression of HO-1 inhibited atherogenesis, whereas Hmox1/ mice bred onto an ApoE−/− background developed more extensive and complex atherosclerotic plaques (12, 13).Recent interest has focused on the therapeutic potential of HO-1 and its products, with probucol, statins, rapamycin, nitric oxide donors, and aspirin being shown to induce HO-1 (reviewed in Ref. 10). Indeed, induction of HO-1 may represent an important component of the vasculoprotective profile of statins, with simvastatin, atorvastatin, and rosuvastatin variously shown to increase HMOX1 promoter activity and mRNA levels, to induce enzyme activity and increase antioxidant capacity in human endothelial cells (EC) (1418). However, induction of HO-1 in vascular EC in vivo has not yet been demonstrated.Vascular endothelium exposed to unidirectional, pulsatile laminar shear stress (LSS) >10 dynes/cm2 is relatively protected against atherogenesis. LSS increases nitric oxide (NO) biosynthesis, prolongs EC survival, and generates an anticoagulant, anti-adhesive cell surface. In contrast, endothelium exposed to disturbed blood flow, with low shear reversing or oscillatory flow patterns, such as that located at arterial branch points and curvatures, is atheroprone. Thus endothelial cells exposed to disturbed blood flow exhibit reduced levels of endothelial nitric-oxide synthase (eNOS), increased apoptosis, oxidative stress, permeability to low density lipoprotein, and leukocyte adhesion (19).The atheroprotective influence of unidirectional LSS and the overlap between these actions and those of statins led us to hypothesize that LSS increases endothelial responsiveness to statins. We demonstrate for the first time that treatment of mice with atorvastatin induces HO-1 expression in the aortic endothelium and that this occurs preferentially at sites exposed to LSS. In vitro, pre-conditioning human EC with an atheroprotective, but not an atheroprone waveform, significantly reduces the concentration of atorvastatin required to enhance HO-1-mediated cytoprotection against oxidant-induced injury. A synergistic relationship between LSS and statins is revealed, resulting in maximal Akt phosphorylation and dependence upon eNOS, Kruppel-like factor 2 (KLF2), and NF-E2-related factor-2 (Nrf2) activation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号