首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of SUMO in RNF4-mediated Promyelocytic Leukemia Protein (PML) Degradation: Sumoylation of pml and phospho-switch control of its sumo binding domain dissected in living cells*
Authors:Yann Percherancier  Delphine Germain-Desprez  Fr��d��ric Galisson  Xavier H Mascle  Laurent Dianoux  Patricia Estephan  Mounira K Chelbi-Alix  and Muriel Aubry
Institution:From the CNRS FRE2937, Institut André Lwoff, Villejuif 94801, France and ;the §Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
Abstract:Promyelocytic leukemia protein (PML) is a tumor suppressor acting as the organizer of subnuclear structures called PML nuclear bodies (NBs). Both covalent modification of PML by the small ubiquitin-like modifier (SUMO) and non-covalent binding of SUMO to the PML SUMO binding domain (SBD) are necessary for PML NB formation and maturation. PML sumoylation and proteasome-dependent degradation induced by the E3 ubiquitin ligase, RNF4, are enhanced by the acute promyelocytic leukemia therapeutic agent, arsenic trioxide (As2O3). Here, we established a novel bioluminescence resonance energy transfer (BRET) assay to dissect and monitor PML/SUMO interactions dynamically in living cells upon addition of therapeutic agents. Using this sensitive and quantitative SUMO BRET assay that distinguishes PML sumoylation from SBD-mediated PML/SUMO non-covalent interactions, we probed the respective roles of covalent and non-covalent PML/SUMO interactions in PML degradation and interaction with RNF4. We found that, although dispensable for As2O3-enhanced PML sumoylation and RNF4 interaction, PML SBD core sequence was required for As2O3- and RNF4-induced PML degradation. As confirmed with a phosphomimetic mutant, phosphorylation of a stretch of serine residues, contained within PML SBD was needed for PML interaction with SUMO-modified protein partners and thus for NB maturation. However, mutation of these serine residues did not impair As2O3- and RNF4-induced PML degradation, contrasting with the known role of these phosphoserine residues for casein kinase 2-promoted PML degradation. Altogether, these data suggest a model whereby sumoylation- and SBD-dependent PML oligomerization within NBs is sufficient for RNF4-mediated PML degradation and does not require the phosphorylation-dependent association of PML with other sumoylated partners.Promyelocytic leukemia protein (PML)5 is a tumor suppressor (1) whose gene is translocated in cases of acute promyelocytic leukemia (2). PML functions as the organizer of PML NBs, which are dynamic structures harboring numerous transiently and permanently localized proteins (3). The importance of PML NB structural integrity was first revealed in acute promyelocytic leukemia because, in this malignancy, the abnormal fusion protein PML/RARα leads to NB disruption. Patient treatment with As2O3 induces the reversion of the acute promyelocytic leukemia phenotype as well as PML/RARα degradation and PML NB reformation (4).PML is a target for the post-translational modification by SUMO, an ubiquitin-like protein that is covalently coupled to PML lysine residues 65, 160, and 490 via a process called sumoylation (5, 6). Among the four human SUMO paralogs identified, SUMO1, -2, and -3 were found to be conjugated to target proteins. It involves an enzymatic cascade for the transfer of the mature SUMO and the formation of an isopeptide bond between the COOH-terminal glycine of SUMO and a lysine from the target protein. Sumoylation is a reversible process due to the existence of several deconjugating enzymes.PML NB formation requires both the covalent linkage (sumoylation) (reviewed in Ref. 7) and the non-covalent interactions of SUMO with PML through a SUMO binding domain (SBD also named SIM for SUMO interacting motif) (8). Interestingly, PML SBD contains specific serines, acting as substrates for the caseine kinase-2 (CK2), which are implicated in PML ubiquitination and degradation (9) and which phosphorylation status could regulate the function of the SBD.Because sumoylation of proteins is dynamic and reversible, this post-translational modification is difficult to follow in vivo and its detection mainly relies on the identification of sumoylated protein species by Western blot following cell lysis. Recently, we used bioluminescence resonance energy transfer (BRET) to detect covalent linkage of ubiquitin (ubiquitination) in living mammalian cells and in real time (10). In brief, BRET monitors the interaction between a protein fused to a luciferase and a protein fused to yellow or green fluorescent protein (YFP or GFP), upon addition of a luciferase substrate; it is a proximity-based assay that requires that the donor of energy (luciferase fusion) and the acceptor (YFP or GFP fusions) are within 50 to 100 Å for an efficient energy transfer (1113). However, a demonstration that BRET may provide a method of choice to follow the dynamics of protein sumoylation in living cells is lacking. Here, we developed a sensitive and quantitative SUMO BRET assay for the detection of PML interactions with SUMO in living cells. We proved that BRET can be used to detect both SUMO covalent and non-covalent interactions with PML (model, Fig. 1H). For this purpose, we used the PMLIII isoform in which sumoylation is induced by As2O3 and triggers a proteasome-dependent PML degradation (14); the degradation process involves the ubiquitination of poly-SUMO covalently coupled to PML by the poly-SUMO-specific E3 ubiquitin ligase RNF4 (1517). Altogether, our BRET results indicate that, As2O3 and/or RNF4-induced PML degradation are dependent on the integrity of both PML sumoylation target sites and the PML SBD core sequence but not on the CK2 serine phosphorylation sites within the SBD. However, phosphorylation of these serines is required for most PML SBD-dependent non-covalent interactions. This phospho-regulation of PML SBD (“SBD phospho-switch”) establishes another link between the phosphorylation and SUMO, different from the phospho-sumoyl switch (18).Open in a separate windowFIGURE 1.BRET reveals both covalent and non-covalent PML/SUMO1 interactions as well as As2O3-induced PML sumoylation in living cells. A and B, detection of PML/SUMO1 interactions by BRET1 (A) or BRET2 (B) titration assays using HEK293T cells transfected for expression of increasing amounts of YFP-SUMO1 (BRET1) or GFP-SUMO1 (BRET2) and a fixed amount of Luc fusion. Negative controls: BRET pairs including PMLC57,60A-Luc (a non-sumoylatable mutant with Cys57 and Cys60 mutated to Ala) or YFP-SUMO1G (a SUMO1 that cannot be processed) (dotted line) (A) and Luc fused to a NLS (B). C and D, detection of covalent and non-covalent PML/SUMO1 interactions by BRET1 (C) or BRET2 (D) titration assays in the presence (dotted lines, empty symbols) or absence (solid lines and symbols) of As2O3 in HEK293T cells transfected for expression of PMLWT-Luc or its sumoylation deficient mutant PML3K-Luc in pairs with either YFP-SUMO1 (BRET1) or GFP-SUMO1 (BRET2). Negative control: PMLWT-Luc in pairs with YFP-SUMO1G. E, kinetics of As2O3-induced PMLWT-Luc sumoylation revealed by BRET1 (assay on attached cells) and BRET2 (cells in suspension). F, dose-response curve to As2O3 treatment for PMLWT-Luc or PML3KR-Luc/YFP-SUMO1 BRET1 pairs. Negative control: PMLC57,60A-Luc/YFP-SUMO1. G, comparison of As2O3-induced sumoylation of PMLWT, PML3KR, and its single lysine mutants at an identical YFP acceptor/Luc donor expression ratio as derived from titration curves. As2O3 treatment (C–G): 5 μm, 4 h exposure for BRET1 and Western blot or 10 μm, 70-min exposure for BRET2. H, model for the covalent (sumoylation) and non-covalent interactions between a tested protein fused to Luc and SUMO fused to a fluorescent protein (YFP) that generates a BRET signal. The black arrows indicate the bioluminescent transfer of energy (or BRET) that occurs between Luc and GFP fusion upon exposure to the cell-permeable luciferase substrate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号