首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dual Nuclease and Helicase Activities of Helicobacter pylori AddAB Are Required for DNA Repair, Recombination, and Mouse Infectivity
Authors:Susan K Amundsen  Jutta Fero  Nina R Salama  and Gerald R Smith
Institution:From the Divisions of Basic Sciences and ;§Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
Abstract:Helicobacter pylori infection of the human stomach is associated with disease-causing inflammation that elicits DNA damage in both bacterial and host cells. Bacteria must repair their DNA to persist. The H. pylori AddAB helicase-exonuclease is required for DNA repair and efficient stomach colonization. To dissect the role of each activity in DNA repair and infectivity, we altered the AddA and AddB nuclease (NUC) domains and the AddA helicase (HEL) domain by site-directed mutagenesis. Extracts of Escherichia coli expressing H. pylori addANUCB or addABNUC mutants unwound DNA but had approximately half of the exonuclease activity of wild-type AddAB; the addANUCBNUC double mutant lacked detectable nuclease activity but retained helicase activity. Extracts with AddAHELB lacked detectable helicase and nuclease activity. H. pylori with the single nuclease domain mutations were somewhat less sensitive to the DNA-damaging agent ciprofloxacin than the corresponding deletion mutant, suggesting that residual nuclease activity promotes limited DNA repair. The addANUC and addAHEL mutants colonized the stomach less efficiently than the wild type; addBNUC showed partial attenuation. E. coli ΔrecBCD expressing H. pylori addAB was recombination-deficient unless H. pylori recA was also expressed, suggesting a species-specific interaction between AddAB and RecA and also that H. pylori AddAB participates in both DNA repair and recombination. These results support a role for both the AddAB nuclease and helicase in DNA repair and promoting infectivity.Infection of the stomach with Helicobacter pylori causes a variety of diseases including gastritis, peptic ulcers, and gastric cancer (1). A central feature of the pathology of these conditions is the establishment of a chronic inflammatory response that acts both on the host and the infecting bacteria (2). Both epithelial (3, 4) and lymphoid (5, 6) cells in the gastric mucosa of infected individuals release DNA-damaging agents that can introduce double-stranded (ds)2 breaks into the bacterial chromosome (7). The ds breaks must be repaired for the bacteria to survive and establish chronic colonization of the stomach. Homologous recombination is required for the faithful repair of DNA damage and bacterial survival. Alteration of the expression of one of a series of cell surface proteins on H. pylori occurs by an apparent gene conversion of babA, the frequency of which is reduced in repair-deficient strains (8, 9). This change in the cell surface, which may allow H. pylori to evade the host immune response, is a second means by which recombination can promote efficient colonization of the stomach by H. pylori.The initiation or presynaptic steps of recombination at dsDNA breaks in most bacteria involves the coordinated action of nuclease and helicase activities provided by one of two multisubunit enzymes, the AddAB and RecBCD enzymes (10). Escherichia coli recBCD null mutants have reduced cell viability, are hypersensitive to DNA-damaging agents, and are homologous recombination-deficient (1114). Similarly, H. pylori addA and addB null mutants are hypersensitive to DNA-damaging agents, have reduced frequencies of babA gene conversion, and colonize the stomach of mice less efficiently than wild-type strains (8).The activities of RecBCD enzyme from E. coli (1519) and AddAB from H. pylori (8) or Bacillus subtilis (2023) indicate some common general features of the presynaptic steps of DNA repair. In the case of E. coli, repair begins when the RecBCD enzyme binds to a dsDNA end and unwinds the DNA using its ATP-dependent helicase activities (17, 24). Single-stranded (ss) DNA produced during unwinding, with or without accompanying nuclease, is coated with RecA protein (16, 25). This recombinogenic substrate engages in strand exchange with a homologous intact duplex to form a joint molecule. Joint molecules are thought to be converted into intact, recombinant DNA either by replication or by cutting and ligation of exchanged strands (26).Although the AddAB and RecBCD enzymes appear to play similar roles in promoting recombination and DNA repair, they differ in several ways. RecBCD is a heterotrimer, composed of one copy of the RecB, RecC, and RecD gene products (27), whereas AddAB has two subunits, encoded by the addA and addB genes (21, 28). The enzyme subunit(s) responsible for helicase activity can be inferred from the presence of conserved protein domains or the activity of purified proteins. AddA, RecB, and RecD are superfamily I helicases with six highly conserved helicase motifs, including the conserved Walker A box found in many enzymes that bind ATP (2932). A Walker A box is defined by the consensus sequence (G/A)XXGXGKT (X is any amino acid (29). RecBCD enzymes in which the conserved Lys in this motif is changed to Gln have a reduced affinity for ATP binding (33, 34) and altered helicase activity (17, 3537).A nuclease domain with the conserved amino acid sequence LDYK is found in RecB, AddA, AddB, and many other nucleases (38). The conserved Asp plays a role in Mg2+ binding at the active site; Mg2+ is required for nuclease activity (39). The recB1080 mutation, which changes codon 1080 from the conserved Asp in this motif to Ala, eliminates nuclease activity (39).We have recently shown that addA and addB deletion mutants are hypersensitive to DNA-damaging agents and impaired in colonization of the mouse stomach compared with wild-type strains (8). To determine the roles of the individual helicase and nuclease activities of H. pylori AddAB in DNA repair and infectivity, we used site-directed mutagenesis to inactivate the conserved nuclease domains of addA and addB and the conserved ATPase (helicase) domain of AddA. Here, we report that loss of the AddAB helicase is sufficient to impair H. pylori DNA repair and infectivity and, when the genes are expressed in E. coli, homologous recombination. AddAB retains partial activity in biochemical and genetic assays when either of the two nuclease domains is inactivated but loses all detectable nuclease activity when both domains are inactivated. Remarkably, H. pylori AddAB can produce recombinants in E. coli only in the presence of H. pylori RecA, suggesting a species-specific interaction in which AddAB facilitates the production of ssDNA-coated with RecA protein. Our results show that both the helicase and nuclease activities are required for the biological roles of H. pylori AddAB.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号