首页 | 本学科首页   官方微博 | 高级检索  
     


CAPS Activity in Priming Vesicle Exocytosis Requires CK2 Phosphorylation
Authors:Mari Nojiri   Kelly M. Loyet   Vadim A. Klenchin   Gregory Kabachinski     Thomas F. J. Martin
Affiliation:From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 and ;the §Department of Protein Chemistry, Genentech, Inc., South San Francisco, California 94080
Abstract:CAPS (Ca2+-dependent activator protein for secretion) functions in priming Ca2+-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca2+-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in the 1289 residue protein. Ser-5, -6, and -7 but not Ser-1281 to Ala substitutions abolished CAPS activity. Protein kinase CK2 phosphorylated CAPS in vitro at these sites and restored the activity of dephosphorylated CAPS. CK2 is the likely in vivo CAPS protein kinase based on inhibition of phosphorylation by tetrabromo-2-benzotriazole in PC12 cells and by the identity of in vivo and in vitro phosphorylation sites. CAPS phosphorylation by CK2 was constitutive, but the elevation of Ca2+ in synaptosomes increased CAPS Ser-5 and -6 dephosphorylation, which terminates CAPS activity. These results identify a functionally important N-terminal phosphorylation site that regulates CAPS activity in priming vesicle exocytosis.Regulated neurotransmitter secretion is central to intercellular communication in the nervous system. Two types of secretory vesicles mediate neurotransmitter release; that is, synaptic vesicles that release transmitters such as glutamate at synapses and dense-core vesicles that release modulatory transmitters and neuropeptides at non-synaptic sites. Both types of secretory vesicles are recruited to docking sites on the plasma membrane where they are primed to a ready release state to undergo fusion in response to Ca2+ elevations. Many of the proteins that mediate the targeting, docking, priming, and Ca2+-dependent fusion of vesicles with the plasma membrane function in both synaptic vesicle and dense-core vesicle pathways (1). CAPS-12 (also known as Cadps1) is a 1289-residue protein that reconstitutes Ca2+-triggered dense-core vesicle exocytosis in permeable neuroendocrine cells at a priming step (24). CAPS is required for secretion of a subset of transmitters in Caenorhabditis elegans (5) and Drosophila melanogaster (6) and for priming dense-core vesicle exocytosis in neuroendocrine cells (7) and synaptic vesicle exocytosis in neurons (8). Vesicle priming reactions are extensively modulated during physiological demand (9), but mechanisms that regulate CAPS function remain to be identified.Reversible protein phosphorylation is a major mechanism for the regulation of cellular processes including vesicle exocytosis. Many proteins that function in evoked vesicle exocytosis are phosphoproteins (10, 11). The neuronal SNARE proteins syntaxin 1A, VAMP-2, and SNAP-25 are phosphorylated by several protein kinases in vitro (1214). Protein kinase C and protein kinase A sites on SNAP-25 affect refilling rates and size, respectively, of the primed pool of vesicles in chromaffin cells (15, 16). Several SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-binding proteins such as munc18, RIM1, and rabphilin undergo regulated phosphorylation, but it is not known whether phosphorylation affects function (10, 11, 17).Because the function of CAPS at a priming step in vesicle exocytosis may be regulated, we determined whether CAPS is phosphorylated. We show that CAPS is a phosphoprotein with functionally essential N-terminal phosphorylated Ser residues. Ser-5, -6, and -7 in CAPS were substrates for protein kinase CK2 in vitro and in vivo as well as for a Ca2+-dependent dephosphorylation mechanism. The results indicate that phosphorylation by protein kinase CK2 is necessary for CAPS activity in priming vesicle exocytosis and that regulated dephosphorylation may constitute a mechanism for terminating CAPS activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号