首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Rho-specific Guanine Nucleotide Exchange Factor Dbs Regulates Breast Cancer Cell Migration
Authors:Zhuoming Liu  Homer C Adams  III  and Ian P Whitehead
Institution:From the Department of Microbiology and Molecular Genetics and the New Jersey Medical School-University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101-1709
Abstract:Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that regulates neurotrophin-3-induced cell migration in Schwann cells. Here we report that Dbs regulates cell motility in tumor-derived, human breast epithelial cells through activation of Cdc42 and Rac1. Cdc42 and Rac1 are activated in T47D cells that stably express onco- or proto-Dbs, and activation is dependent upon growth of the cells on collagen I. Transient suppression of expression of Cdc42 or Rac1 by small interfering RNAs attenuates Dbs-enhanced motility. Both onco- and proto-Dbs-enhanced motility correlates with an increase in tyrosine phosphorylation of focal adhesion kinase on Tyr-397 and p130Cas on Tyr-410 and an increase in the abundance of the Crk·p130Cas complex. Suppression of expression of Cdc42 or its effector, Ack1, reduces tyrosine phosphorylation of focal adhesion kinase and p130Cas and disrupts the Crk·p130Cas complex. We further determined that suppression of expression of Cdc42, Ack1, p130Cas, or Crk reduces Rac1 activation and cell motility in Dbs-expressing cells to a level comparable with that in vector cells. Therefore, a cascade of activation of Cdc42 and Rac1 by Dbs through the Cdc42 effector Ack1 and the Crk·p130Cas complex is established. Suppression of the expression of endogenous Dbs reduces cell motility in both T47D cells and MDA-MB-231 cells, which correlates with the down-regulation of Cdc42 activity. This suggests that Dbs activates Cdc42 in these two human breast cancer cell lines and that the normal function of Dbs may be required to support cell movement.Rho GTPases are a subfamily of the Ras superfamily of small signaling molecules that are widely expressed in mammalian cells (1). RhoA, Cdc42, and Rac1 are the most extensively studied members of the Rho GTPase family, and each plays a prominent and discrete role in cell migration (2, 3). Cdc42 promotes the formation of filopodia and is required to establish cell polarity (35); Rac1 promotes the formation of lamellipodia at the leading edge of motile cells (6), and RhoA promotes the formation of stress fibers which generate the traction forces needed to retract the cell tail and move the cell body beyond the leading edge (7, 8). Consistent with this important role in cell motility, RhoA, Cdc42, and Rac1 are often overexpressed in human tumors including breast, lung, and colon (9), and overexpression of constitutively active RhoA, Cdc42, or Rac1 increases cell migration and invasion (2, 10, 11).The spatiotemporal regulation of Rho GTPase activity is tightly controlled by three classes of proteins. Rho-specific guanine nucleotide exchange factors (RhoGEFs)2 activate Rho proteins by facilitating the exchange of GDP for GTP; Rho GTPase-activating proteins (RhoGAPs) stimulate the intrinsic rate of hydrolysis of Rho proteins, thus converting them into their inactive state; Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) compete with RhoGEFs for binding to GDP-bound Rho proteins and sequester Rho in the inactive state (12).Dbs was identified in the screen for proteins whose overexpression cause malignant growth in murine fibroblasts (13, 14). The full-length Dbs protein (proto-Dbs) is a RhoGEF family member which contains multiple recognizable domains (Fig. 1A) including a Sec14-like domain, spectrin-like repeats, a RhoGEF domain (includes a DH and PH domain), and an SH3 domain (13). The original oncogenic version of Dbs that was identified (amino acid residues 525–1097; designated onco-Dbs) contains the RhoGEF domain alone. When expressed in murine fibroblasts, the transforming and catalytic activity of Dbs is subject to autoinhibition that is mediated by the NH2-terminal Sec14 domain (15). Although the endogenous function of Dbs is not known, recent studies suggest that Dbs and the Rac-specific exchange factor Tiam1 regulate neurotrophin-stimulated cell migration in Schwann cells through activation of Cdc42 and Rac1, respectively (16, 17).Open in a separate windowFIGURE 1.Onco-Dbs and proto-Dbs induce cell migration in tumor-derived breast epithelial cells. A, domain structure of the onco-Dbs and proto-Dbs proteins (Sec14 = Sec14-like domain; Spec = Spectrin-like repeats; DH = Dbl homology domain; PH = pleckstrin homology domain; SH3 = Src homology 3 domain). B, stable expression of HA-epitope-tagged onco-Dbs (Mr = 65) and proto-Dbs (Mr = 129 kDa) was confirmed by Western blot using an anti-HA antibody. Three independent sets of cell lines were generated. C, T47D cells stably expressing vector (Vec), onco-Dbs, or proto-Dbs were compared in a transwell motility assay on filters pre-coated with collagen I. The motility of cells stably expressing onco-Dbs or proto-Dbs is expressed relative to that of cells stably expressing vector. Data are represented as the mean ± S.D. of three independent experiments performed in triplicate. D, T47D cells stably expressing vector, onco-Dbs, or proto-Dbs were cultured to monolayer on dishes coated with poly-l-lysine or collagen I, as indicated. Cells were serum-starved overnight, and then the surface of the plate was scraped. Migration of cells at the wound edge was monitored and photographed at 18 h. Representative images are shown. E, growth curves of T47D cells stably expressing vector, onco-Dbs, or proto-Dbs. Cells were cultured in triplicate on poly-l-lysine (filled symbols) or on dishes pre-coated with collagen I (open symbols) and counted on the indicated days. Data shown are representative of three independent experiments.Conversion of Rho proteins to their active GTP-bound state allows them to interact with effector signaling molecules. Ack1 is a nonreceptor-tyrosine kinase that binds to active Cdc42 but not Rac1 or RhoA (18, 19). Activated Ack1 is overexpressed in primary tumors and cancer cell lines and has been implicated in cancer metastasis (20). Recent studies have identified a signaling complex that regulates the motility of human breast epithelial cells that contains Cdc42, Ack1, p130Cas, and Crk (21). Ack1 and p130Cas interact through their respective SH3 domains, and Ack1 phosphorylates p130Cas in a collagen I-dependent manner. p130Cas was first identified as a hyperphosphorylated adapter protein in cells transformed by v-Src and v-Crk (22, 23). Further studies showed that p130Cas is associated with both cellular Src and Crk in a tyrosine phosphorylation-dependent manner (24, 25). Focal adhesion kinase (FAK) binds to the NH2 terminus of p130Cas and phosphorylates the COOH terminus in a region that is involved in p130Cas binding to Src (26). The binding of Crk to p130Cas recruits binding partners to the SH3 domain of Crk, including C3G and DOCK180, which activate Rap1 and Rac1, respectively (2731). Thus, formation of the Crk·p130Cas complex is considered to be a molecular switch that can induce cell migration by activating Rac1 (32).Here we show that both proto-Dbs and onco-Dbs increase cell migration in human breast adenocarcinoma cells in a collagen I-dependent manner. Increased motility is dependent upon the activation of Rac1 and Cdc42 and is mediated by the assembly of Crk·p130Cas complexes. Suppression of endogenous Dbs expression in human tumor-derived breast epithelial cells limits cell motility, suggesting that Dbs may be a critical regulator of cell behavior in breast cancer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号