Prolectin, a Glycan-binding Receptor on Dividing B Cells in Germinal Centers |
| |
Authors: | Sarah A. Graham Sabine A. F. J��gouzo Sheng Yan Alex S. Powlesland Jacob P. Brady Maureen E. Taylor Kurt Drickamer |
| |
Affiliation: | From the Division of Molecular Biosciences, Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom |
| |
Abstract: | Prolectin, a previously undescribed glycan-binding receptor, has been identified by re-screening of the human genome for genes encoding proteins containing potential C-type carbohydrate-recognition domains. Glycan array analysis revealed that the carbohydrate-recognition domain in the extracellular domain of the receptor binds glycans with terminal α-linked mannose or fucose residues. Prolectin expressed in fibroblasts is found at the cell surface, but unlike many glycan-binding receptors it does not mediate endocytosis of a neoglycoprotein ligand. However, compared with other known glycan-binding receptors, the receptor contains an unusually large intracellular domain that consists of multiple sequence motifs, including phosphorylated tyrosine residues, that allow it to interact with signaling molecules such as Grb2. Immunohistochemistry has been used to demonstrate that prolectin is expressed on a specialized population of proliferating B cells in germinal centers. Thus, this novel receptor has the potential to function in carbohydrate-mediated communication between cells in the germinal center.Membrane-bound mammalian glycan-binding receptors, often referred to as lectins, are believed to play multiple distinct roles in the immune system, decoding information in complex oligosaccharide structures on cell surfaces and soluble glycoproteins (1, 2). A host of glycan-binding receptors on dendritic cells and macrophages function in pathogen recognition, often resulting in uptake of microbes through endocytic mechanisms. Examples include the mannose receptor, DC-SIGN,3 langerin, and the macrophage galactose receptor. Glycan-binding receptors can also recognize glycans found on the surfaces of mammalian cells. Some of these receptors, such as the selectins, mediate adhesion between leukocytes and endothelia (3, 4). A small number of receptors, notably members of the siglec family, bind mammalian-type glycans and have been shown to have potential signaling functions (5). While multiple glycan-binding receptors have been described on cells of the myeloid lineage, the complement of such receptors on lymphocytes is much more restricted. The best characterized examples are the T-cell adhesion molecule L-selectin (4) and the B-cell receptor CD22, also designated siglec-2 (5).Genomic screening for potential glycan-binding receptors has usually been undertaken by initially searching for the presence of one of the several types of structural domains that are known to support sugar-binding activity (6). Knowledge of the structures of multiple families of modular carbohydrate-recognition domains (CRDs) has facilitated identification of proteins with potential sugar-binding activity and can lead to predictions of what types of ligands might be bound. Although the human genome has been extensively screened with profile-recognition algorithms that identify common sequence motifs associated with CRDs, refinements to the genome sequence and improvements in gene-recognition algorithms occasionally result in detection of novel proteins that contain putative CRDs.We describe a previously undetected glycan-binding receptor identified by re-screening of the human genome and provide characterization of its molecular and cellular properties. Based on its expression in a specialized population of proliferating B cells in germinal centers, we propose that it be designated prolectin. Our results suggest that prolectin functions in carbohydrate-mediated communication between cells in the germinal center. |
| |
Keywords: | |
|
|