首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expanded thermodynamic true yield prediction model: adjustments and limitations
Authors:Jinghua Xiao  Jeanne M VanBriesen
Institution:Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA.
Abstract:Bacterial yield prediction is critical for bioprocess optimization and modeling of natural biological systems. In previous work, an expanded thermodynamic true yield prediction model was developed through incorporating carbon balance and nitrogen balance along with electron balance and energy balance. In the present work, the application of the expanded model is demonstrated in multiple growth situations (aerobic heterotrophs, anoxic, anaerobic heterotrophs, and autolithotrophs). Two adjustments are presented that enable improved prediction when additional information regarding the environmental conditions (pH) or degradation pathway (requirement for oxygenase- or oxidase-catalyzed reactions) is known. A large data set of reported yields is presented and considered for suitability in model validation. Significant uncertainties of literature-reported yield values are described. Evaluation of the model with experimental yield values shows good predictive ability. However, the wide range in reported yields and the variability introduced into the prediction by uncertainty in model parameters, limits comprehensive validation. Our results suggest that the uncertainty of the experimental data used for validation limits further improvement of thermodynamic prediction models.
Keywords:Bacterial thermodynamics  Bacterial yield  Yield prediction  Modeling bacterial growth  Microbial yield
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号