首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of leucine and isoleucine in tuning the hydropathy of class A GPCRs
Authors:Christian Baumann  Oliver Zerbe
Institution:1. Department of Chemistry, University of Zurich, Zurich, Switzerland;2. Department of Chemistry, University of Zurich, Zurich, Switzerland

Contribution: Writing - original draft, Supervision, Funding acquisition

Abstract:Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the β-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.
Keywords:G protein-coupled receptor  hydrophobicity  lipid  lipophilicity  membrane insertion  membrane protein  transmembrane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号