首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ethylene thiourea (ETU). A review of the genetic toxicity studies
Institution:1. Univ. Clermont Auvergne, INSERM, UMR 1240, IMOST, F-63005 Clermont-Ferrand, France;2. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Dept. of Neuroradiopharmaceuticals, Permoserstrasse 15, 04318 Leipzig, Germany;1. Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea;2. Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea;1. Departmentof Chemistry, Trakya University, 22030 Edirne, Turkey;2. Departmentof Physics, Trakya University, 22030 Edirne, Turkey;3. Institute of Science, Trakya University, 22030 Edirne, Turkey
Abstract:Ethylene thiourea (ETU) is a common contaminant, metabolite and degradation product of the fungicide class of ethylene bisdithiocarbamates (EBDCs); as such, they present possible exposure and toxicological concerns to exposed individuals. ETU has been assayed in many different tests to assess genotoxicity activity. While a great number of negative results are found in the data base, there is evidence that demonstrates ETU is capable of inducing genotoxic endpoints. These include responses for gene mutations (e.g. Salmonella), structural chromosomal alterations (e.g. aberrations in cultured mammalian cells as well as a dominant lethal assay) and other genotoxic effects (e.g. bacterial rec assay and several yeast assays).It is important to consider the magnitude of the positive responses as well as the concentrations/doses used when assessing the genotoxicity of ETU. While ETU induces a variety of genotoxic endpoints, it does not appear to be a potent genotoxic agent. For example, it is a weak bacterial mutagen in the Salmonella assay without activation in strain TA1535 at concentrations generally above 1000 μg/plate. Weak genotoxic activity of this sort is usually observed in most of the assays with positive results. Since ETU does not appear very potent and is not extremely toxic to test cells and organisms, it is not surprising to find that ETU does not produce consistent effects in many of the assays reviewed. Consequently, in many instances, mixed results for the same assay type are reported by different investigators, but as reviewed herein, these results may be dependent upon the test conditions in each individual laboratory. A primary shortcoming with many of the reported negative results is that the concentrations or doses used are not high enough for an adequate test for ETU activity. There are also problems with many of the negative assays generally in protocol or reporting, particularly with the in vivo studies (e.g. inappropriate sample number and/or sampling times; inadequate top dose employed).Overall, while ETU does not appear to be a potent genotoxic agent, it is capable of producing genotoxic effects (e.g. gene mutations, structural chromosomal aberrations). This provides a basis for weak genotoxic activity by ETU. Furthermore, based on a suggestive dominant lethal positive result, there may be a concern for heritable effects. Due to the many problems with the conduct and assessment of the in vivo assays, it is worth repeating in vivo
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号