首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activity and stability of native and modified alanine aminotransferase in cosolvent systems and denaturants
Authors:JoséM Moreno  Ciarán O Fágáin
Institution:

School of Biological Sciences, Dublin City University, Dublin 9, Ireland

Abstract:Alanine aminotransferase (ALT) is used in clinical diagnostics, amino acid synthesis and in biosensors. Here we describe the stabilization of soluble porcine ALT by chemical modification with mono- and bis-imidates. The apparent transition temperatures (‘Tm’, the temperature where 50% of initial activity was lost in 10 min) for native and DMS-modified ALT were 46 and 56 °C respectively. The effects of water-miscible organic solvents (methanol, dimethylformamide, dimethylsulphoxide and 1,4-dioxane) on the activity/stability of native and modified forms were determined. In all systems studied, an abrupt decrease in ALT catalytic activity was observed on reaching a certain threshold concentration of the organic solvent. The modified derivatives were more organotolerant than native enzyme. Comparison of the apparent Vmax and Km for 2-oxoglutarate as substrate, determined in 10% (v/v) organic solvent, with the results of thermal inactivation studies showed that the solvents have different effects on ALT's catalytic parameters and on its conformational stability. At 35 °C with no organic solvent the dimethylsuberimidate (DMS)-modified derivative's half-life was 16 times greater than that for native enzyme; in 30% (v/v) solvent at 35 °C, the DMS-modified ALT's half-life was up to 4.6 times greater than native enzyme's. DMS-modified ALT was also more stable in urea and guanidine HCl, and its refolding was more noticeable, than that of native enzyme.
Keywords:Alanine aminotransferase  Modification  Imidates  Organic solvents  Denaturants
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号