Loss of THIN EXINE2 disrupts multiple processes in the mechanism of pollen exine formation |
| |
Authors: | Rui Wang Anna A. Dobritsa |
| |
Affiliation: | Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210 |
| |
Abstract: | Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide–sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation.Genetic, microscopy, and immunohistochemistry analyses place the Arabidopsis THIN EXINE2 protein at the intersection of several processes involved in the formation of pollen exine. |
| |
Keywords: | |
|
|