首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of expiratory flow limitation on respiratory mechanical impedance: a model study
Authors:Peslin, R.   Farre, R.   Rotger, M.   Navajas, D.
Abstract:Peslin, R., R. Farré, M. Rotger, and D. Navajas.Effect of expiratory flow limitation on respiratory mechanicalimpedance: a model study. J. Appl.Physiol. 81(6): 2399-2406, 1996.---Large phasicvariations of respiratory mechanical impedance (Zrs) have been observedduring induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify themeaning of Zrs during EFL, we have measured from 5 to 30 Hz the inputimpedance (Zin) of mechanical analogues of the respiratory system,including flow-limiting elements (FLE) made of easily collapsiblerubber tubing. The pressures upstream (Pus) and downstream (Pds) fromthe FLE were controlled and systematically varied. Maximal flow(Vmax) increased linearly with Pus, was close to thevalue predicted from wave-speed theory, and was obtained for Pus-Pds of4-6 hPa. The real part of Zin started increasing abruptlywith flow (V) >85%Vmax and either further increased or suddenlydecreased in the vicinity of Vmax. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seenwith an analogue that mimicked the changes of airwaytransmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLEwere combined, the latter was analyzed in terms of a serial (Zs) and ashunt (Zp) compartment. Zs was consistent with a large resistance andinertance, and Zp with a mainly elastic element having an elastanceclose to that of the tube walls. We conclude that Zrs data during EFLmainly reflect the properties of the FLE.

Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号