Monensin inhibits the first cellular movements in early chick embryo |
| |
Authors: | Nikolas Zagris Maria Panagopoulou |
| |
Affiliation: | (1) Division of Genetics and Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece |
| |
Abstract: | Summary In early chick blastoderm at stage XIII, the interaction of the hypoblast with the epiblast triggers on the epiblast the first extensive cellular migrations, which result in formation of the primitive streak, the source of the axial mesoderm. During this period, extracellular material (ECM) is secreted and assembled into an organized network in the extracellular spaces and is implicated in regulating the behaviour of the cells that contact it. The first cellular migrations and inductions are inhibited when early chick blastoderm is treated with the glycosylation-perturbing ionophore monensin. The difference in amount and in organization of ECM between monensin-treated embryos and control embryos is striking. Even blastoderms at stage X, which are essentially free of ECM, show extensive ECM after monensin treatment. Monensin produces a substantial change in the polypeptide pattern with the induction or marked accentuation of multiple charged species (isoforms) of polypeptides different from those present in the control embryos. The interference of monensin with the migration and induction mechanisms is permanent in embryos before the primitive streak (PS) stage, and it seems that the respective signals or the sensitivity of the epiblast/hypoblast cells to them must be very stage specific. Monensin-treated embryos probably secrete abnormal ECM that does not provide the proper conditions for the hypoblast to interact with the epiblast cells. |
| |
Keywords: | Cell migration Induction Extracellular matrix Monensin Chick embryo |
本文献已被 SpringerLink 等数据库收录! |
|