首页 | 本学科首页   官方微博 | 高级检索  
   检索      


K(+) channels regulate ENaC expression via changes in promoter activity and control fluid clearance in alveolar epithelial cells
Authors:Bardou Olivier  Privé Anik  Migneault Francis  Roy-Camille Karl  Dagenais André  Berthiaume Yves  Brochiero Emmanuelle
Institution:Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - H?tel-Dieu, Montréal, Québec, Canada H2W 1T8; Département de médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7.
Abstract:Active Na(+) absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and K(ATP) K(+) channel activities exerts sustained control in Na(+) transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the α-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K(+) channels, and 2) to determine the physiological impact of K(+) channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and K(ATP) channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24h) increased α-ENaC expression, similarly to K(ATP) activation by pinacidil. Conversely, pharmacological KvLQT1 and K(ATP) inhibition or silencing with siRNAs down-regulated α-ENaC expression. Furthermore, K(+) channel blockers significantly decreased α-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and K(ATP) activation dose-dependently enhanced α-ENaC promoter activity. Finally, we noted a physiological impact of changes in K(+) channel functions on ERK activity, α-, β-, γ-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K(+) channels regulate α-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号