首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iron coordination structures of oxygen sensor FixL characterized by Fe K-edge extended x-ray absorption fine structure and resonance raman spectroscopy.
Authors:H Miyatake  M Mukai  S Adachi  H Nakamura  K Tamura  T Iizuka  Y Shiro  R W Strange  S S Hasnain
Institution:Institute of Physical and Chemical Research, RIKEN Harima Institute, Mikazuki-cho, Sayo, Hyogo 679-5143, Japan.
Abstract:FixL is a heme-based O(2) sensor protein involved in a two-component system of a symbiotic bacterium. In the present study, the iron coordination structure in the heme domain of Rhizobium meliloti FixLT (RmFixLT, a soluble truncated FixL) was examined using Fe K-edge extended x-ray absorption fine structure (EXAFS) and resonance Raman spectroscopic techniques. In the EXAFS analyses, the interatomic distances and angles of the Fe-ligand bond and the iron displacement from the heme plane were obtained for RmFixLT in the Fe(2+), Fe(2+)O(2), Fe(2+)CO, Fe(3+), Fe(3+)F(-), and Fe(3+)CN(-) states. An apparent correlation was found between the heme-nitrogen (proximal His-194) distance in the heme domain and the phosphorylation activity of the histidine kinase domain. Comparison of the Fe-CO coordination geometry between RmFixLT and RmFixLH (heme domain of RmFixL), based on the EXAFS and Raman results, has suggested that the kinase domain directly or indirectly influences steric interaction between the iron-bound ligand and the heme pocket. Referring to the crystal structure of the heme domain of Bradyrhizobium japonicum FixL (Gong, W., Hao, B., Mansy, S. S., Gonzalez, G., Gilles-Gonzalez, M. A., and Chan, M. K. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 15177-15182), we discussed details of the iron coordination structure of RmFixLT and RmFixLH in relation to an intramolecular signal transduction mechanism in its O(2) sensing.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号