首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps
Authors:Chang Edward  Kim Sohee  Yin Haishan  Nagaraja Haikady N  Kuret Jeff
Institution:Department of Molecular and Cellular Biochemistry, Center for Molecular Neurobiology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA.
Abstract:Mutations in the MAPT gene encoding tau protein lead to neurofibrillary lesion formation, neurodegeneration, and cognitive decline associated with frontotemporal lobar degeneration. While some pathogenic mutations affect MAPT introns, resulting in abnormal splicing patterns, the majority occur in the tau coding sequence leading to single amino acid changes in tau primary structure. Depending on their location within the polypeptide chain, tau missense mutations have been reported to augment aggregation propensity. To determine the mechanisms underlying mutation-associated changes in aggregation behavior, the fibrillization of recombinant pathogenic mutants R5L, G272V, P301L, V337M, and R406W prepared in a full-length four-repeat human tau background was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods. Kinetic constants for nucleation and extension phases of aggregation were then estimated by direct measurement and mathematical simulation. Results indicated that the mutants differ from each other and from wild-type tau in their aggregation propensity. G272V and P301L mutations increased the rates of both filament nucleation and extension reactions, whereas R5L and V337M increased only the nucleation phase. R406W did not differ from wild-type in any kinetic parameter. The results show that missense mutations can directly promote tau filament formation at different stages of the aggregation pathway.
Keywords:aggregation reaction mechanism  frontotemporal lobar degeneration  neurofibrillary tangle  tau
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号