首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Propolis protects against high glucose-induced vascular endothelial dysfunction in isolated rat aorta
Authors:Mohammed S El-Awady  Dina S El-Agamy  Ghada M Suddek  Manar A Nader
Institution:1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
Abstract:While propolis is known to have abundant bioactive constituents and a variety of biological activities, it is not clear whether propolis has beneficial effects on high glucose-mediated vascular endothelial impairment. The aim of the present study was to investigate the potential protective effect of propolis extract against the acute vascular endothelial dysfunction resulting from exposure to high glucose load and to elucidate its underlying mechanism. Rat aortic rings were incubated with normal glucose (11 mM), high glucose (44 mM), or mannitol (44 mM) for 3 h with or without propolis extract (400 μg/ml). Contraction to phenylephrine (Phe, 10?9–10?5 M) and relaxation to acetylcholine (ACh, 10?9–10?5 M) and sodium nitroprusside (SNP, 10?9–10?5 M) were measured before and after incubation. Changes in malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were also measured. Phe-induced contraction was impaired by high glucose as the E max decreased from 138.87?±?11.43 to 103.65?±?11.5 %. In addition, ACh-induced relaxation was impaired as the E max decreased from 99.80?±?7.25 to 39.20?±?6.5 %. SNP-induced relaxation was not affected. Furthermore, high glucose decreased the levels of both SOD (by 6 U/ml) and GSH (by 68 %) and increased levels of MDA (by 85 %). Propolis extract prevented high glucose-induced impairment of Phe and ACh responses and increased both SOD and GSH, leading to decreased MDA levels. In conclusion, propolis can protect against high glucose-induced vascular dysfunction by reducing oxidative stress.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号