首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tissue Quality Assessment Using a Novel Direct Elasticity Assessment Device (The E-Finger): A Cadaveric Study of Prostatectomy Dissection
Authors:Daniel W Good  Ashfaq Khan  Steven Hammer  Paul Scanlan  Wenmiao Shu  Simon Phipps  Simon H Parson  Grant D Stewart  Robert Reuben  S Alan McNeill
Institution:1. Edinburgh Urological Cancer Group, University of Edinburgh, Western General Hospital, Edinburgh, EH2 4XU, United Kingdom.; 2. School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom.; 3. Department of Anatomy, University of Edinburgh, Edinburgh, United Kingdom.; 4. Department of Urology, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom.; National Health Research Institutes, Taiwan,
Abstract:

Introduction

Minimally invasive radical prostatectomy (RP) (robotic and laparoscopic), have brought improvements in the outcomes of RP due to improved views and increased degrees of freedom of surgical devices. Robotic and laparoscopic surgeries do not incorporate haptic feedback, which may result in complications secondary to inadequate tissue dissection (causing positive surgical margins, rhabdosphincter damage, etc). We developed a micro-engineered device (6 mm2 sized) E-finger]) capable of quantitative elasticity assessment, with amplitude ratio, mean ratio and phase lag representing this. The aim was to assess the utility of the device in differentiating peri-prostatic tissue types in order to guide prostate dissection.

Material and Methods

Two embalmed and 2 fresh frozen cadavers were used in the study. Baseline elasticity values were assessed in bladder, prostate and rhabdosphincter of pre-dissected embalmed cadavers using the micro-engineered device. A measurement grid was created to span from the bladder, across the prostate and onto the rhabdosphincter of fresh frozen cadavers to enable a systematic quantitative elasticity assessment of the entire area by 2 independent assessors. Tissue was sectioned along each row of elasticity measurement points, and stained with haematoxylin and eosin (H&E). Image analysis was performed with Image Pro Premier to determine the histology at each measurement point.

Results

Statistically significant differences in elasticity were identified between bladder, prostate and sphincter in both embalmed and fresh frozen cadavers (p = <0.001). Intra-class correlation (ICC) reliability tests showed good reliability (average ICC = 0.851). Sensitivity and specificity for tissue identification was 77% and 70% respectively to a resolution of 6 mm2.

Conclusions

This cadaveric study has evaluated the ability of our elasticity assessment device to differentiate bladder, prostate and rhabdosphincter to a resolution of 6 mm2. The results provide useful data for which to continue to examine the use of elasticity assessment devices for tissue quality assessment with the aim of giving haptic feedback to surgeons performing complex surgery.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号