首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The SbcC and SbcD homologs of the cyanobacterium <Emphasis Type="Italic">Anabaena</Emphasis> sp. strain PCC7120 (Alr3988 and All4463) contribute independently to DNA repair
Authors:Sarita Pandey  Anurag Kirti  Arvind Kumar  Hema Rajaram
Institution:1.Molecular Biology Division,Bhabha Atomic Research Centre,Mumbai,India;2.Homi Bhabha National Institute,Training School Complex,Mumbai,India
Abstract:The ubiquitous SbcCD exonuclease complex has been shown to perform an important role in DNA repair across prokaryotes and eukaryotes. However, they have remained uncharacterized in the ancient and stress-tolerant cyanobacteria. In the cyanobacterium Anabaena sp. strain PCC7120, SbcC and SbcD homologs, defined on the basis of the presence of corresponding functional domains, are annotated as hypothetical proteins, namely Alr3988 and All4463 respectively. Unlike the presence of sbcC and sbcD genes in a bicistronic operon in most organisms, these genes were distantly placed on the chromosome in Anabaena, and found to be negatively regulated by LexA. Both the genes were found to be essential in Anabaena as the individual deletion mutants were non-viable. On the other hand, the proteins could be individually overexpressed in Anabaena with no effect on normal cell physiology. However, they contributed positively to enhance the tolerance to different DNA damage-inducing stresses, such as mitomycin C and UV- and γ-radiation. This indicated that the two proteins, at least when overexpressed, could function independently and mitigate the damage caused due to the formation of DNA adducts and single- and double-strand breaks in Anabaena. This is the first report on possible independent in vivo functioning of SbcC and SbcD homologs in any bacteria, and the first effort to functionally characterize the proteins in any cyanobacteria.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号