首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Secretagogue-dependent phosphorylation of the insulin granule membrane protein phogrin is mediated by cAMP-dependent protein kinase
Authors:Wasmeier C  Hutton J C
Institution:Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
Abstract:Phogrin, a 60/64-kDa integral membrane protein of dense-core granules in neuroendocrine cells, is phosphorylated in a Ca(2+)-sensitive manner in response to secretagogue stimulation of pancreatic beta-cells. Phosphorylation of the phogrin cytosolic domain by beta-cell homogenates was Ca(2+)-independent but stimulated by cAMP. Recombinant protein kinase A (PKA) could phosphorylate phogrin directly. High performance liquid chromatography analysis of tryptic phosphopeptides, combined with site-directed mutagenesis of candidate sites, revealed the presence of two phosphorylation sites at Ser-680 and Thr-699, located in the juxtamembrane region between the transmembrane span and the protein-tyrosine phosphatase homology domain of phogrin. Full-length wild-type phogrin, as well as mutant versions where Ser-680 and Thr-699 had been replaced either by alanines or by aspartic acid residues, were targeted to secretory granules in transfected AtT20 neuroendocrine cells. Stimulation of these cells with a range of secretagogues, including K(+), BaCl(2), and forskolin, demonstrated that the in vivo phosphorylation sites are the same as those identified in vitro. In MIN6 beta-cells, the PKA inhibitor H-89 prevented Ca(2+)-dependent phogrin phosphorylation in response to glucose, suggesting that Ca(2+) exerts its effect on phogrin phosphorylation through regulating the activity of PKA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号