首页 | 本学科首页   官方微博 | 高级检索  
     


Secretion and functional display of fusion proteins through the curli biogenesis pathway
Authors:Nani Van Gerven  Parveen Goyal  Guy Vandenbussche  Maia De Kerpel  Wim Jonckheere  Henri De Greve  Han Remaut
Affiliation:1. Structural & Molecular Microbiology, Structural Biology Research Center, VIB, , 1050 Brussels, Belgium;2. Structural Biology Brussels, Vrije Universiteit Brussel, , 1050 Brussels, Belgium;3. Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, , 1050 Brussels, Belgium
Abstract:Curli are functional amyloids expressed as fibres on the surface of Enterobacteriaceae. Contrary to the protein misfolding events associated with pathogenic amyloidosis, curli are the result of a dedicated biosynthetic pathway. A specialized transporter in the outer membrane, CsgG, operates in conjunction with the two accessory proteins CsgE and CsgF to secrete curlin subunits to the extracellular surface, where they nucleate into cross‐beta strand fibres. Here we investigate the substrate tolerance of the CsgG transporter and the capability of heterologous sequences to be built into curli fibres. Non‐native polypeptides ranging up to at least 260 residues were exported when fused to the curli subunit CsgA. Secretion efficiency depended on the folding properties of the passenger sequences, with substrates exceeding an approximately 2 nm transverse diameter blocking passage through the transport channel. Secretion of smaller passengers was compatible with prior DsbA‐mediated disulphide bridge formation in the fusion partner, indicating that CsgG is capable of translocating non‐linear polypeptide stretches. Using fusions we further demonstrate the exported or secreted heterologous passenger proteins can attain their native, active fold, establishing curli biogenesis pathway as a platform for the secretion and surface display of small heterologous proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号