首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genomic atolls of differentiation in coral reef fishes (Hypoplectrus spp., Serranidae)
Authors:O Puebla  E Bermingham  W O McMillan
Institution:1. GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, , Kiel, 24105 Germany;2. Smithsonian Tropical Research Institute, , 0843‐03092 Panamá, República de Panamá;3. Patricia and Phillip Frost Museum of Science, , Miami, FL, USA
Abstract:Because the vast majority of species are well diverged, relatively little is known about the genomic architecture of speciation during the early stages of divergence. Species within recent evolutionary radiations are often minimally diverged from a genomic perspective, and therefore provide rare opportunities to address this question. Here, we leverage the hamlet radiation (Hypoplectrus spp., brightly coloured reef fishes from the tropical western Atlantic) to characterize genomic divergence during the early stages of speciation. Transect surveys and spawning observations in Belize, Honduras and Panama confirm that sympatric barred (H. puella), black (H. nigricans) and butter (H. unicolor) hamlets are phenotypically distinct and reproductively isolated, although hybrid spawnings and individuals with intermediate phenotypes are seen on rare occasions. A survey of approximately 100 000 restriction site‐associated SNPs in 126 samples from the three species across the three replicate populations reveals extremely slight genomewide divergence among species (FST = 0.0038), indicating that ecomorphological differences and functional reproductive isolation are maintained in sympatry in a backdrop of extraordinary genomic similarity. Nonetheless, a very small proportion of SNPs (0.05% on average) are identified as FST outliers among sympatric species. Remarkably, a single SNP is identified as an outlier in repeated populations for the same species pair. A minicontig assembled de novo around this SNP falls into the genomic region containing the HoxCa10 and HoxCa11 genes in 10 teleost species, suggesting an important role for Hox gene evolution in this radiation. This finding, if confirmed, would provide a better understanding of the links between micro‐ and macroevolutionary processes.
Keywords:genomic architecture  Hox genes  marine  RAD sequencing  speciation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号