首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Coral cell separation and isolation by fluorescence-activated cell sorting (FACS)
Authors:Benyamin Rosental  Zhanna Kozhekbaeva  Nathaniel Fernhoff  Jonathan M Tsai  Nikki Traylor-Knowles
Institution:1.Institute for Stem Cell Biology and Regenerative Medicine,Stanford University School of Medicine,Stanford,USA;2.Department of Pathology, Hopkins Marine Station,Stanford University,Pacific Grove,USA;3.University of Miami, Rosenstiel School of Marine and Atmospheric Science,Florida,USA
Abstract:

Background

Generalized methods for understanding the cell biology of non-model species are quite rare, yet very much needed. In order to address this issue, we have modified a technique traditionally used in the biomedical field for ecological and evolutionary research. Fluorescent activated cell sorting (FACS) is often used for sorting and identifying cell populations. In this study, we developed a method to identify and isolate different cell populations in corals and other cnidarians.

Methods

Using fluorescence-activated cell sorting (FACS), coral cell suspension were sorted into different cellular populations using fluorescent cell markers that are non-species specific. Over 30 different cell markers were tested. Additionally, cell suspension from Aiptasia pallida was also tested, and a phagocytosis test was done as a downstream functional assay.

Results

We found that 24 of the screened markers positively labeled coral cells and 16 differentiated cell sub-populations. We identified 12 different cellular sub-populations using three markers, and found that each sub-population is primarily homogeneous. Lastly, we verified this technique in a sea anemone, Aiptasia pallida, and found that with minor modifications, a similar gating strategy can be successfully applied. Additionally, within A. pallida, we show elevated phagocytosis of sorted cells based on an immune associated marker.

Conclusions

In this study, we successfully adapted FACS for isolating coral cell populations and conclude that this technique is translatable for future use in other species. This technique has the potential to be used for different types of studies on the cellular stress response and other immunological studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号