首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Building the bacterial orisome: high‐affinity DnaA recognition plays a role in setting the conformation of oriC DNA
Authors:Gulpreet Kaur  Mansi P Vora  Christopher A Czerwonka  Tania A Rozgaja  Julia E Grimwade  Alan C Leonard
Institution:Department of Biological Sciences, Florida Institute of Technology, , Melbourne, FL, 32901 USA
Abstract:During assembly of the E. coli pre‐replicative complex (pre‐RC), initiator DnaA oligomers are nucleated from three widely separated high‐affinity DnaA recognition sites in oriC. Oligomer assembly is then guided by low‐affinity DnaA recognition sites, but is also regulated by a switch‐like conformational change in oriC mediated by sequential binding of two DNA bending proteins, Fis and IHF, serving as inhibitor and activator respectively. Although their recognition sites are separated by up to 90 bp, Fis represses IHF binding and weak DnaA interactions until accumulating DnaA displaces Fis from oriC. It remains unclear whether high‐affinity DnaA binding plays any role in Fis repression at a distance and it is also not known whether all high‐affinity DnaA recognition sites play an equivalent role in oligomer formation. To examine these issues, we developed origin‐selective recombineering methods to mutate E. coli chromosomal oriC. We found that, although oligomers were assembled in the absence of any individual high‐affinity DnaA binding site, loss of DnaA binding at peripheral sites eliminated Fis repression, and made binding of both Fis and IHF essential. We propose a model in which interaction of DnaA molecules at high‐affinity sites regulates oriC DNA conformation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号