首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Allelopathic effects of Alexandrium fundyense (Dinophyceae) on Thalassiosira cf. gravida (Bacillariophyceae): a matter of size
Authors:Emily R Lyczkowski  Lee Karp‐Boss
Institution:School of Marine Sciences, University of Maine, , Orono, Maine, 04469 USA
Abstract:Allelopathic interactions among phytoplankton are well documented. The potency of allelopathic species and responses of target species to allelochemicals are quite variable, however, limiting full understanding of the role these interactions may play in nature. One trait that may influence the sensitivity of an individual to allelochemicals is cell size. The few studies that have examined relationships between cell size and susceptibility to allelochemicals have compared different species and thus could not distinguish between the role of size and species‐specific physiological differences. Culturing an actively sexually reproducing diatom allowed us to focus on the influence of target cell size within a single species. We studied growth and nutrient acquisition by the chain‐forming Thalassiosira cf. gravida Clever in the presence and absence of allelochemicals released by Alexandrium fundyense Balech as a function of Tcf. gravida cell size. Upon exposure to filtrate of A. fundyense, Tcf. gravida cultures “bleached” and both growth and nutrient utilization ceased for up to 4 d. The magnitude of the effect was dependent on filtrate concentration and Tcf. gravida cell surface area:volume ratio. The greatest inhibition was observed on the smallest cells, while Tcf. gravida cultures that had undergone cell enlargement via sexual reproduction were least sensitive to A. fundyense filtrate. These results demonstrate that competitor cell size, independent from taxonomy, may influence the outcome of allelopathic interactions. The findings presented here suggest a potential ecological impact of diatom cell size reduction and sexual reproduction that has not yet been described and that may be important in determining diatom survival and success.
Keywords:allelopathy        A      lexandrium     diatom  sexual reproduction  size        T      halassiosira   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号