首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thrombin inactivates acidic fibroblast growth factor but not basic fibroblast growth factor
Authors:R R Lobb
Institution:Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts.
Abstract:Incubation of bovine brain derived acidic fibroblast growth factor (aFGF) with bovine or human thrombin, 0.5 NIH unit/mL, for 24 h at 37 degrees C results in cleavage of the mitogen, generating a 14-kilodalton fragment which has significantly reduced affinity for immobilized heparin as compared to aFGF, and is at least 50-fold less potent at stimulating mitogenesis. In addition, an 18 amino acid peptide, aFGF(123-140), is generated, identifying one of the thrombin cleavage sites as the Arg-122/Thr-123 bond. The peptide, aFGF(123-140), is neither mitogenic itself nor an inhibitor of the mitogenic activity of aFGF. The cleavage of aFGF by thrombin is inhibited by heparin (50 micrograms/mL) and is completely blocked by the irreversible thrombin inhibitors D-Phe-Pro-Arg chloromethyl ketone and hirudin. Incubation of aFGF with 50 units/mL thrombin at 37 degrees C results in rapid cleavage of the mitogen into several fragments. In contrast, incubation of bovine brain derived basic fibroblast growth factor with 1 unit/mL thrombin for 24 h, or 50 units/mL thrombin for 6 h, does not result in significant cleavage of mitogen. The results show that the C-terminal region of aFGF is of functional importance in both mitogenesis and heparin binding. Most importantly, a novel role for anionic heparin-binding growth factors and their fragments is indicated in physiologic and pathologic situations associated with thrombin generation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号