首页 | 本学科首页   官方微博 | 高级检索  
     


Low-molecular-weight aliphatic carboxylic acids in soil solutions under different vegetations determined by capillary zone electrophoresis
Authors:Westergaard Strobel  Bjarne  Bernhoft  Irene  Borggaard  Ole K.
Affiliation:(1) Veterinary and Agricultural University, Thorvaldsensvej 40, 1870 Frederiksberg C, Denmark;(2) Danish Forest and Landscape Research Institute, Hoersholm Kongevej 11, 2970 Hoersholm, Denmark
Abstract:Concentrations of low-molecular-weight aliphatic carboxylic acids in soil solution were determined by a newly developed capillary zone electrophoresis method. Soil solution samples were collected by centrifugation of soil from the A horizon of a Danish, homogeneous, nutrient-rich Hapludalf in adjacent forested and arable plots. The forested plots of 0.5 ha were 33-year old stands of beech (Fagus sylvatica L.), oak (Quercus robur L.), grand fir (Abies grandis Lindl.), and Norway spruce (Picea abies (L.) Karst.), while sugar beet (Beta vulgaris L.) and winter wheat (Triticum aestivum L.) were the agricultural crops this year. High variability in soil solution concentrations of metal cations (Al, Ca, K, Mg, Na), monocarboxylic acids (formic, acetic, lactic, and valeric acids), and di- and tricarboxylic acids (oxalic, malic, succinic, and citric acids) were found within each plot. Despite this short-range within-plot variability, higher concentrations of di- and tricarboxylic acids were found in the forested soils than in the arable soils. The vegetation seemed to favour some monocarboxylic acids, but the total monocarboxylic acid concentrations showed little relation to the vegetation. Probably due to much less soil water in the Norway spruce plot, the low-molecular-weight aliphatic carboxylic acid concentrations in the samples from that plot were much higher than those found in samples from the other plots. Carbon in low-molecular-weight aliphatic carboxylic acids only accounts for a few percent of dissolved organic carbon, and no general relation was found between carbon in low-molecular-weight aliphatic carboxylic acids and dissolved organic carbon, although the correlation between carbon in di- and tricarboxylic acids and dissolved organic carbon was significant. This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:capillary zone electrophoresis  DOC  organic acid  soil solution  spatial variability  tree species
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号