首页 | 本学科首页   官方微博 | 高级检索  
     


Consensus substrate sequence for protein-tyrosine phosphatase receptor type Z
Authors:Fujikawa Akihiro  Fukada Masahide  Makioka Yoshikazu  Suzuki Ryoko  Chow Jeremy Pak Hong  Matsumoto Masahito  Noda Masaharu
Affiliation:Division of Molecular Neurobiology, National Institute for Basic Biology, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.
Abstract:Protein-tyrosine phosphatase receptor type Z (Ptprz) has multiple substrate proteins, including G protein-coupled receptor kinase-interactor 1 (Git1), membrane-associated guanylate kinase, WW and PDZ domain-containing 1 (Magi1), and GTPase-activating protein for Rho GTPase (p190RhoGAP). We have identified a dephosphorylation site at Tyr-1105 of p190RhoGAP; however, the structural determinants employed for substrate recognition of Ptprz have not been fully defined. In the present study, we revealed that Ptprz selectively dephosphorylates Git1 at Tyr-554, and Magi1 at Tyr-373 and Tyr-858 by in vitro and cell-based assays. Of note, the dephosphorylation of the Magi1 Tyr-858 site required PDZ domain-mediated interaction between Magi1 and Ptprz in the cellular context. Alignment of the primary sequences surrounding the target phosphotyrosine residue in these three substrates showed considerable similarity, suggesting a consensus motif for recognition by Ptprz. We then estimated the contribution of surrounding individual amino acid side chains to the catalytic efficiency by using fluorescent peptides based on the Git1 Tyr-554 sequence in vitro. The typical substrate motif for the catalytic domain of Ptprz was deduced to be Glu/Asp-Glu/Asp-Glu/Asp-Xaa-Ile/Val-Tyr(P)-Xaa (Xaa is not an acidic residue). Intriguingly, a G854D substitution of the Magi1 Tyr-858 site matching better to the motif sequence turned this site to be susceptible to dephosphorylation by Ptprz independent of the PDZ domain-mediated interaction in cells. Furthermore, we found by database screening that the substrate motif is present in several proteins, including paxillin at Tyr-118, its major phosphorylation site. Expectedly, we verified that Ptprz efficiently dephosphorylates paxillin at this site in cells. Our study thus provides key insights into the molecular basis for the substrate recognition of Ptprz.
Keywords:Phosphotyrosine   Phosphotyrosine Signaling   Receptors   Signal Transduction   Protein-tyrosine Phosphatase (Tyrosine Phosphatase)
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号