首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reorganization and translocation of the ectoplasmic cytoskeleton in the leech zygote by condensation of cytasters and interactions of dynamic microtubules and actin filaments
Authors:Fernández Juan  Cantillana Viviana  Ubilla Andrea
Institution:Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile. jfernand@abello.dic.uchile.cl
Abstract:The formation and bipolar translocation of an ectoplasmic cytoskeleton of rings and meridional bands was studied in interphase zygotes of the glossiphoniid leech Theromyzon trizonare. Zygotes consisted of a peripheral organelle-rich ectoplasm and an internal yolk-rich endoplasm. After microinjection of labeled tubulin and/or actin, zygotes were examined by time-lapse video imaging, immunofluorescence and confocal microscopy. The rings and meridional bands were formed by condensation of a network of moving cytasters that represented ectoplasmic secondary centers of microtubule and actin filament nucleation. In some cases the network of cytasters persisted between the rings. The cytoskeleton had an outer actin layer and an inner microtubule layer that merged at the irregularly-shaped boundary zone. Bipolar translocation of the rings, meridional bands, or the network of cytasters led to accumulation of the cytoskeleton at both zygote poles. Translocation of the cytoskeleton was slowed or arrested by microinjected taxol or phalloidin, in a dose-dependent fashion. Results of drug treatment probably indicate differences in the degree and speed at which the cytoskeleton becomes stabilized. Moreover, drugs that selectively stabilized either microtubules or actin filaments stabilized and impaired movement of the entire cytoskeleton. Microtubule poisons and latrunculin-B failed to disrupt the cytoskeleton. It is concluded that the microtubule and actin cytoskeletons are dynamic, presumably cross-linked and resistant to depolymerizing drugs. They probably move along each other by a sliding mechanism that depends on the instability of microtubules and actin filaments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号