首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of ultraviolet-B enhanced radiation and temperature on growth and photochemical activities inVigna unguiculata
Authors:N Nedunchezhian  G Kulandaivelu
Institution:(1) Department of Plant Sciences, Madurai Kamaraj University, 625021 Madurai, India;(2) Department of Plant Nutrition, Aula Dei Experimental Station, CSIC, 50080 Zaragoza, Spain
Abstract:Changes in growth characteristics and photochemical activities inVigna unguiculata L. Walp seedlings maintained at constant temperature of 10, 20, 30 and 40 ‡C under control and ultraviolet-B enhanced radiation (UV-B) were investigated. UV-B retarded the shoot elongation and also leaf expansion to a great extent at 30 ‡C but produced only marginal changes at 20 and 40 ‡C. Similar response was also observed with respect to changes in leaf fresh and dry masses and total chlorophyll (Chl) content under these temperatures. At 10 ‡C the total Chl content was 3-fold higher under the treatment than under control conditions. In seedlings growing at 20 and 30 ‡C the overall photosynthetic electron transport (H2O -> methyl viologen) showed a significant enhancement during the 36-h UV-B treatment and thereafter a gradual reduction. Although a similar trend was found in photosystem 1 (PS1), the inhibition even after 60 h of UV-B treatment was not statistically significant. Photosystem 2 (PS2) activity was inhibited in seedlings treated for 60 h by UV-B at 20 and 30 ‡C. However, no inhibition was observed at 40 ‡C. No detectable photochemical activity was found in seedlings grown at 10 ‡C under either control or UV-B enhanced irradiation although the chloroplasts contained Chl. This work was supported by a Research Associateship to N.N. from the Council of Scientific and Industrial Research (India) and by a grant from the Ministerio de Education y Ciencia (ref. 5894- AM086772).
Keywords:chlorophyll  dry mass  fresh mass  fluorescence induction  leaf expansion  mung bean  photosystem 1  photosystem 2  shoot elongation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号