首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Elevated CO2 and Simulated Seasonal Changes in Temperature on the Species Composition and Growth Rates of Pasture Turves
Authors:Newton, P. C.D.   Clark, H.   Bell, C. C.   Glasgow, E. M.   Campbell, B. D.
Affiliation:AgResearch Grasslands, Flock House Agricultural Centre, Private Bag, Bulls, and AgResearch Grasslands, Private Bag, Palmerston North, New Zealand
Abstract:Large turves from a ryegrass/white clover based pasture wereexposed to 350 or 700 µl l-1 CO2 for a period of 217 din controlled environment rooms. The temperature was increasedduring the experiment from 10/4 °C day/night to 16/10 °Cand finally to 22/16 °C. The turves were cut to a heightof 2 cm at intervals and growth rates calculated from the regrowth. Growth rates over the duration of the experiment were 8% higherat elevated CO2; the difference between CO2 treatments beingstatistically significant only at the highest temperature. Speciescomposition of the turves at 350 µl l-1 CO2 showed seasonalchanges similar to those measured in the field. The effect ofCO2 was to exaggerate the normal decline of ryegrass at warmertemperatures and increase the proportion of white clover. About30% of the total growth rate was from other species (notablyBromus hordeaceus L. and Poa trivialis L.) and this fractionwas similar between CO2 levels. Root mass was measured at theend of the experiment and was 50% higher at elevated CO2. The modest above-ground response to CO2 was a result of CO2stimulation occurring only at the higher temperature. Becauseof the CO2 x temperature interaction, the effect of CO2 in temperateregions will be seasonal. When this is matched with seasonalgrowth patterns of herbage species, a complex response of pasturecommunities to CO2 is possible. In our case, white clover wasgrowing most strongly during the period of greatest CO2 stimulationand consequently its growth was enhanced more than that of ryegrass;however, the cooler season growth of ryegrass gives it a temporalniche which is little affected by CO2 and this may be importantfor ryegrass stability if it is an inherently poor responderto CO2. The results indicate that for temperate species theeffects of competition at elevated CO2 cannot be easily determinedfrom experiments conducted at a single temperature.Copyright1994, 1999 Academic Press CO2 enrichment, seasonal growth, species composition, turves, Trifolium repens L., Lolium perenne L., climate change
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号