首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Response of potato tuber cell division and growth to shade and elevated CO2
Authors:Chen Chien-Teh  Setter Tim L
Institution:Department of Crop and Soil Science, Cornell University, Ithaca, New York 14853, USA.
Abstract:Plants adjust their sink-organ growth rates, development and distribution of dry matter in response to whole-plant photosynthate status. To advance understanding of these processes, potato (Solanum tuberosum L.) plants were subjected to CO(2) and light flux treatments, and early tuber growth was assessed. Atmospheric CO(2) (700 or 350 micro mol mol(-1)) and light flux (shade and control illumination) treatments were imposed at two growth stages: tuber initiation (TI) and tuber bulking (TB). Elevated CO(2) increased accumulation of total net biomass when imposed at both stages, and increased tuber growth rate by about 36 %, but did not increase the number of tubers. Elevated CO(2) increased the number of cells in tubers at both TI and TB stages, whereas shade substantially decreased the number of cells at both stages. Generally, treatments did not affect cell volume or the proportion of nuclei endoreduplicating (repeated nuclear DNA replication in the absence of cell division), but the shade treatment led to a decrease in cell volume at TB and a decrease in endoreduplication at TI. Elevated CO(2) increased, and shade decreased, glucose concentration and soluble invertase activity in the cambial zones at both TI and TB, whereas sucrose concentration and activities of glucokinase, fructokinase, cell-wall-bound invertase and thymidine kinase were unaffected. Modulation of tuber cell division was responsible for much of the growth response to whole-plant photosynthate status, and treatments affected cambial-zone glucose and soluble invertase in a pattern suggesting involvement of a glucose signalling pathway.
Keywords:Solanum tuberosum L    potato tuber  elevated atmospheric CO2  cell division  cell proliferation  sugar regulation  sink capacity  partitioning  
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号