Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugensis |
| |
Authors: | THOMAS F. NALEPA DAVID L. FANSLOW GREGORY A. LANG |
| |
Affiliation: | Great Lakes Environmental Research Laboratory, 2205 Commonwealth Blvd., Ann Arbor, MI, U.S.A. |
| |
Abstract: | 1. The native amphipod Diporeia spp. was once the dominant benthic organism in Lake Michigan and served as an important pathway of energy flow from lower to upper trophic levels. Lake‐wide surveys were conducted in 1994/1995, 2000 and 2005, and abundances of Diporeia and the invasive bivalves Dreissena polymorpha (zebra mussel) and Dreissena rostriformis bugensis (quagga mussel) were assessed. In addition, more frequent surveys were conducted in the southern region of the lake between 1980 and 2007 to augment trend interpretation. 2. Between 1994/1995 and 2005, lake‐wide density of Diporeia declined from 5365 to 329 m−2, and biomass (dry weight, DW) declined from 3.9 to 0.4 g DW m−2. The percentage of all sites with no Diporeia increased over time: 1.1% in 1994/1995, 21.7% in 2000 and 66.9% in 2005. On the other hand, total dreissenid density increased from 173 to 8816 m−2, and total biomass increased from 0.4 to 28.6 g DW m−2. Over this 10‐year time period, D. r. bugensis displaced D. polymorpha as the dominant dreissenid, comprising 97.7% of the total population in 2005. In 2007, Diporeia was rarely found at depths shallower than 90 m and continued to decline at greater depths, whereas densities of D. r. bugensis continued to increase at depths greater than 50 m. 3. The decline in Diporeia occurred progressively from shallow to deep regions, and was temporally coincident with the expansion of D. polymorpha in nearshore waters followed by the expansion of D. r. bugensis in offshore waters. In addition, Diporeia density was negatively related to dreissenid density within and across depth intervals; the latter result indicated that dreissenids in shallow waters remotely influenced Diporeia in deep waters. 4. With the loss of Diporeia and increase in D. r. bugensis, the benthic community has become a major energy sink rather that a pathway to upper trophic levels. With this replacement of dominant taxa, we estimate that the relative benthic energy pool increased from 17 to 109 kcal m−2 between 1994/1995 and 2005, and to 342 kcal m−2 by 2007. We project that previously observed impacts on fish populations will continue and become more pronounced as the D. r. bugensis population continues to expand in deeper waters. |
| |
Keywords: | benthos food webs invasive species lakes populations |
|
|