首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of electron-transfer and proton-translocation activities in bovine heart mitochondrial cytochrome c oxidase deficient in subunit III
Authors:L J Prochaska  K A Reynolds
Abstract:The electron-transfer and proton-translocation activities of cytochrome c oxidase deficient in subunit III (Mr 29 884) prepared by native gel electrophoresis Ludwig, B., Downer, N. W., & Capaldi, R. A. (1979) Biochemistry 18, 1401-1407] have been investigated. This preparation has been depleted of 82-87% of its subunit III content as quantitated by Coomassie Brilliant Blue staining intensity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 14C]dicyclohexylcarbodiimide labeling. The maximum rate of electron transfer of the subunit III deficient enzyme at pH 6.5 is 383 s-1, 78% of control enzyme. Neither the high-affinity site (Km = 10(-8) M) nor the low-affinity site (Km = 10(-6) M) of the cytochrome c kinetic interaction with cytochrome c oxidase is affected by the removal of subunit III. Subunit III deficient cytochrome c oxidase retains the ability to bind cytochrome c in both the high- and low-affinity sites as determined in direct thermodynamic binding experiments. Liposomes containing this preparation exhibit a respiratory control ratio Hinkle, P. C., Kim, J. J., & Racker, E. (1972) J. Biol. Chem. 247, 1338-1341] of 3.9, while liposomes containing control enzyme exhibit a ratio of 4.3, suggesting that they have a similar proton permeability. Vectorial proton translocation initiated by the addition of ferrocytochrome c in liposomes containing subunit III deficient enzyme is decreased by 64% compared to those containing control enzyme. When the proton-translocated to electron-transferred ratio is measured in these phospholipid vesicles at constant enzyme turnover, removal of subunit III from the enzyme decreases the ratio from 0.52 to 0.21, a 60% decrease.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号