首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Early events in protein aggregation: molecular flexibility and hydrophobicity/charge interaction in amyloid peptides as studied by molecular dynamics simulations
Authors:Valerio Mariacristina  Colosimo Alfredo  Conti Filippo  Giuliani Alessandro  Grottesi Alessandro  Manetti Cesare  Zbilut Joseph P
Institution:Department of Chemistry, University of Rome La Sapienza, Rome, Italy.
Abstract:In a previous article (Zbilut et al., Biophys J 2003;85:3544-3557), we demonstrated how an aggregation versus folding choice could be approached considering hydrophobicity distribution and charge. In this work, our aim is highlighting the mutual interaction of charge and hydrophobicity distribution in the aggregation process. Use was made of two different peptides, both derived from a transmembrane protein (amyloid precursor protein; APP), namely, Abeta(1-28) and Abeta(1-40). Abeta(1-28) has a much lower aggregation propensity than Abeta(1-40). The results obtained by means of molecular dynamics simulations show that, when submitted to the most "aggregation-prone" environment, corresponding to the isoelectric point and consequently to zero net charge, both peptides acquire their maximum flexibility, but Abeta(1-40) has a definitely higher conformational mobility than Abeta(1-28). The absence of a hydrophobic "tail," which is the most mobile part of the molecule in Abeta(1-40), is the element lacking in Abeta(1-28) for obtaining a "fully aggregating" phenotype. Our results suggest that conformational flexibility, determined by both hydrophobicity and charge effect, is the main mechanistic determinant of aggregation propensity.
Keywords:aggregation versus folding  conformational changes  α to β transition  amyloid fibrils  conformational flexibility
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号