首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A reappraisal of nitrate inhibition of nitrogenase in A317, a nitrate reductase-deficient mutant of pea (Pisum sativum)
Authors:K B Walsh  B J Carroll
Institution:Dept of Biology, Univ. of Central Queensland, Rockhampton M. C., 4702, Australia;Dept of Botany, Australian National Univ., Canberra, ACT, 2601, Australia
Abstract:Symbiotic plants of Pisum sativum L. cv. Juneau and its nitrate reductase-(EC 1. 6. 6. 1)-deficient mutant, A317, were exposed to nitrate for up to 8 days and assessed for nitrate assimilation, nitrogenase activity and nodule carbohydrate status. The mutant, A317, was not impaired in its ability to absorb nitrate over up to 8 days, but was leakier with respect to nitrate reduction ability than previously realized, as 63% of the nitrate absorbed by the plant over 8 days was assimilated (in contrast to 93% in the wild type). After 2 days exposure to 5 m M nitrate, nitrogenase (EC 1.18.2.1) activity was less affected in A317 (84% of initial) than in Juneau (46% of initial): nodule starch reserves were less depleted in A317 (70% of initial) than in Juneau (26% of initial). It was concluded that nitrate reduction is a major cause of nitrate inhibition of nodule activity, and that its effect may be mediated through a decrease in the availability of carbohydrate to the nodules. Longer term (> 4 day) exposure of A317 plants to nitrate resulted in accumulation of nitrate in plant tissues, an associated necrosis of shoot tissue, a marked decrease in nodule starch content and a severe inhibition of nodule activity. This consideration of the effect of the duration of exposure to nitrate is used to resolve a discrepancy between previous reports on the sensitivity to nitrate of nitrogenase activity in nitrate reductase-deficient mutants of pea.
Keywords:Carbohydrate deprivation  carbon partitioning  nitrate  nitrate reductase mutant  nitrogenase inhibition              Pisum sativum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号