首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alpha-lactalbumin forms a compact molten globule in the absence of disulfide bonds.
Authors:C Redfield  B A Schulman  M A Milhollen  P S Kim  C M Dobson
Institution:Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK. redfield@bioch.ox.ac.uk
Abstract:Human alpha-lactalbumin (alpha-LA) is a four disulfide-bonded protein that adopts partially structured conformations under a variety of mildly denaturing conditions. At low pH, the protein is denatured but compact, with a high degree of secondary structure and a native-like fold. This is commonly referred to as a molten globule. A variant of alpha-LA, in which all eight cysteines have been mutated to alanine (all-Ala alpha-LA), has been studied using NMR spectroscopy. At low pH all-Ala alpha-LA is nearly as compact as wild type alpha-LA. Urea-induced unfolding experiments reveal that the residues that remain compact in the absence of disulfide bonds are those that are most resistant to unfolding in the wild-type alpha-LA molten globule. This is particularly remarkable because this stable core is formed by segments of the polypeptide chain from both the N- and C-termini. These results show that the overall architecture of the protein fold of alpha-LA is determined by the polypeptide sequence itself, and not as the result of cross-linking by disulfide bonds, and provide insight into the way in which the sequence codes for the fold.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号